|
- 2018
利用可变形部件模型检测遥感影像道路交叉口
|
Abstract:
为了解决高分辨率遥感影像道路交叉口位置检测与类型识别问题,提出了一种基于可变形部件模型的道路交叉口检测方法。首先,分析了道路交叉口在高分辨率遥感影像上的表征形式;然后,借鉴面向对象的思想,利用可变形部件模型,通过训练和学习其整体和部件组成的空间布局特征获取目标对象模型参数;最后,通过滑动窗口搜索匹配方法获取道路交叉口位置和其对应的类型。由仿真与实验结果可知,此算法不仅能够自动、准确地检测道路交叉口的几何位置,而且能够识别其几何形状类型,可有效提高道路网络拓扑结构构建效率
[1] | Zhang Weiwei,Mao Zhengyuan. A New Approach to Automatic Positioning of Road Junctions in High Spatial Resolution Remotely Sensed Imagery[J]. <em>Remote Sensing for Land & Resources</em>,2012, 1(3):13-16(张伟伟,毛政元. 一种面向高空间分辨率遥感影像的路口自动定位新方法[J].国土资源遥感2012,1(3):13-16) |
[2] | Lei Xiaoqi,Wang Weixin,Lai Jun. A Method of Road Extraction from High-Resolution Remote Sensing Images Based on Shape Features[J].<em>Acta Geodaetica et Cartographica Sinica</em>, 2009, 38(5):457-464(雷小奇,王卫星,赖均. 一种基于形状特征进行高分辨率遥感影像道路提取方法[J]. 测绘学报. 2009, 38(5):457-464) |
[3] | Ravanbakhsh M, Heipke C, Pakzad K. Road Junction Extraction from High Resolution Aerial Imagery[J]. <em>Photogramm</em>, 2008, 23(124):405-423 |
[4] | FelzenszwalbP, McAllester D. The Generalized A* Architecture[J]. <em>Journal of Artificial Intelligence Research</em>, 2007,29:153-190 |
[5] | Felzenszwalb P, Mcallester D, Ramanan D. ADiscriminatively Trained, Multiscale, Deformable Part Model[C]. IEEE Conference on Computer Vision and Pattern Recognition, New York, 2008 |
[6] | Everingham M, Gool L V, Williams C K I, et al. The Pascal Visual Object Classes (VOC) Challenge[J].<em>International Journal of Computer Vision</em>, 2010, 88(2):303-338 |
[7] | ChiangY Y, Knoblock C A, Shahabi C, et al. Automatic and Accurate Extraction of Road Intersections from Raster Maps[J]. <em>Geoinformatica</em>, 2009, 13(2):121-157 |
[8] | Wang Yangsheng. Automated Road Junction Recognition Basedon Model Restriction[D].Wuhan:Wuhan University,2005(王阳生. 基于模型约束的道路交又口自动识别方法研究[D]. 武汉:武汉大学,2005) |
[9] | Qin Qiming,Wang Hongqing. Establishment of Marine Remote Sensing Spatio-Temporal Data Model[J]. <em>Advances in Marine Science</em>, 2004, 22(B10):204-210(秦其明,王洪庆.海洋遥感信息时空数据模型的建立[J].海洋科学进展,2004,22(B10):204-210) |
[10] | Li Xiaowen.Preparation of a Large Map of Big Data,Remote Sensing in Advance[J].<em>Science & Technology Review</em>,2014, 18:1-3(李小文.编制大数据时代的大地图,遥感可先行[J].科技导报,2014,18:1-3) |
[11] | Tang Wei,Zhao Shuhe. Road Extraction in Quaternion Space from High Spatial Resolution Remotely Sensed Images Basing on GVF Snake Model[J]. <em>Journal of Remote Sensing</em>, 2011, 15(5):1046-1052(唐伟,赵书河. 基于GVF和Snake模型的高分辨率遥感图像四元数空间道路提取[J]. 遥感学报, 2011,15(5):1046-1052) |
[12] | Wu Liang,Hu Yunan. Balloon Snake with Adjustable Expansion Coefficient in Road Contour Extraction[J].<em>Acta Geodaetica et Cartographica Sinica</em>, 2011,40(1):71-77(吴亮,胡云安. 膨胀系数可调的Balloon Snake方法在道路轮廓提取中的应用[J]. 测绘学报, 2011,40(1):71-77) |
[13] | Li Jun,Qin Qiming. Parking Lot Extraction Method Based on Floating Car Data[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2013, 38(5):599-603(李军,秦其明.利用浮动车数据提取停车场位置[J].武汉大学学报·信息科学版,2013, 38(5):599-603) |
[14] | Ravanbakhsh M, Heipke C, Pakzad K. Knowledge-Based Road Junction Extraction from High resolution Aerial Images[M]. Paris, France:Urban Remote Sensing Joint Event, 2007 |
[15] | Felzenszwalb P F, Huttenlocher D P. DistanceTransforms of Sampled Functions[J]. <em>Cornell Computing & Information Science</em>, 2004, 8(19):415-428 |