全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

利用L1范数和中位数选取拟准观测值
A Method for Selecting the Quasi-Accurate Observations Based on L1 Norm and Median

DOI: 10.13203/j.whugis20160156

Keywords: 粗差,拟准检定法,真误差,拟准观测,L1范数,
outlier
,quasi-accurate detection method,real errors,quasi-accurate observations,L1 norm

Full-Text   Cite this paper   Add to My Lib

Abstract:

粗差探测拟准检定法的核心是拟准观测的选取。提出了L1范数和中位数相结合的方法选取拟准观测值,并设计了相应的准则。首先利用L1范数方法得到稳健的残差,将其中残差接近于零时对应的观测值直接确定为拟准观测值,然后将余下残差形成新的残差向量,并计算其绝对值的中位数,拟准观测值即为那些余下残差绝对值小于中位数所对应的观测值。GPS网平差和GPS单点定位计算结果表明本文提出的选取拟准观测值的方法有效可行

References

[1]  Li Deren, Yuan Xiuxiao. Error Processing and Reliability Theory[M]. Wuhan:Publishing House of Wuhan University, 2002(李德仁, 袁修孝. 误差处理与可靠性理论[M]. 武汉:武汉大学出版社, 2002)
[2]  Gui Q M, Li X N, Gong Y S, et al. A Bayesian Unmasking Method for Locating Multiple Gross Errors Based on Posterior Probabilities of Classification Variables[J]. Journal of Geodesy, 2010, 85(4):191-203
[3]  Ghilani C D. Adjustment Computations:Spatial Data Analysis[M]. 5th ed. New York:John Wiley & Sons, 2010
[4]  Guo Jianfeng, Zhao Jun. Comparative Analysis of Statistical Tests Used for Detection and Identification of Outliers[J]. Acta Geodaetica et Cartographica Sinica, 2012, 41(1):14-18(郭建锋, 赵俊. 粗差探测与识别统计检验量的比较分析[J]. 测绘学报, 2012, 41(1):14-18)
[5]  Kok J J. On Data Snooping and Multiple Outliers Testing[R]. Rochville:NOAA Technical Report, 1984
[6]  Shi Chuang, Liu Jingnan. Correspondence Based Outlier Analysis[J]. Journal of Wuhan Technical University of Surveying and Mapping, 1998, 23(1):5-9(施闯, 刘经南. 基于相关分析的粗差理论[J]. 武汉测绘科技大学学报, 1998, 23(1):5-9)
[7]  Zhou Jiangwen. Quasi-Stable Adjustment of Monitoring Networks[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 1980(周江文. 监测网的拟稳平差[D]. 武汉:中国科学院测量与地球物理研究所, 1980)
[8]  Baselga S. Nonexistence of Rigorous Tests for Multiple Outlier Detection in Least-Squares Adjustment[J]. Journal of Surveying Engineering, 2011, 137(3):109-112
[9]  Yang L, Wang J L, Knigh N L, et al. Outlier Separability Analysis with a Multiple Alternative Hypotheses Test[J]. Journal of Geodesy, 2013, 87:579-604
[10]  Schwarz C R, Kok J J. Blunder Detection and Data Snooping in LS and Robust Adjustments[J]. Journal of Surveying Engineering, 1993, 119(4):127-136
[11]  Koch K R. Parameter Estimation and Hypothesis Testing in Linear Models[M]. 2nd ed. New York:Springer-Verlag, 1999
[12]  Yang Yuanxi. The Theory of Robust Estimation and Its Applicaiton[M]. Beijing:Bayi Press, 1993(杨元喜. 抗差估计理论及其应用[M]. 北京:八一出版社, 1993)
[13]  Baarda W. A Testing Procedure for Use in Geodetic Networks[J]. Netherlands Geod Comm, 1968, 2(5):5-97
[14]  Pope A J. The Statistics of Residuals and the Detection of Outliers[R]. Maryland:NOAA Technical Report, 1978
[15]  Yu Zongchou, Li Mingfeng. Simultaneous Location and Evaluation of Multi-dimensional Gross Errors[J]. Journal of Wuhan Technique University of Surveying and Mapping, 1996, 21(4):322-329(於宗俦, 李明峰. 多维粗差的同时定位与定值[J]. 武汉测绘科技大学学报, 1996, 21(4):322-329)
[16]  Ding X, Coleman R. Multiple Outlier Detection by Evaluating Redundancy Contributions of Observations[J]. Journal of Geodesy, 1996, 70(8):489-498
[17]  Gui Q M, Gong Y S, Li G Z, et al. A Bayesian Approach to the Detection of Gross Errors Based on Posterior Probability[J]. Journal of Geodesy, 2007, 81(10):651-659
[18]  Wang Haitao, Ou Jikun, Yuan Yunbin, et al. On Equivalence of Three Estimators for Outliers in Li-near Model[J]. Geomatics and Information Science of Wuhan University, 2013, 38(2):162-166(王海涛, 欧吉坤, 袁运斌, 等. 估计观测值粗差三种方法的等价性讨论[J]. 武汉大学学报·信息科学版, 2013, 38(2):162-166)
[19]  Knight N L, Wang J L. A Comparison of Outlier Detection Procedures and Robust Estimation Methods in GPS Positioning[J]. The Journal of Navigation, 2009, 62(4):699-709
[20]  Klein L, Matsuoka M T, Guzatto M P, et al. On Evaluation of Different Methods for Quality Control of Correlated Observations[J]. Survey Review, 2015, 340(47):28-35
[21]  Ou Jikun. Further on the Principle, Implementation and Application of Quasi-Accurate Detection Method[J]. Engineering of Surveying and Mapping, 2002, 11(4):3-6(欧吉坤. 再论拟准检定法的原理、实施和应用[J]. 测绘工程, 2002, 11(4):3-6)
[22]  Guo J F, Ou J K, Wang H T. Quasi-Accurate Detection of Outliers for Correlated Observations[J]. Journal of Surveying Engineering, 2007, 133(2):129-133
[23]  Guo Jianfeng. Theory of Model Errors and Its Applications in GPS Data Processing[D]. Wuhan:Institute of Geodesy and Geophysics, Chinese Academy of Sciences, 2007(郭建锋. 模型误差理论若干问题研究及其在GPS数据处理中的应用[D]. 武汉:中国科学院测量与地球物理研究所, 2007)
[24]  Huber P J, Robchetti E M. Robust Statistics[M]. 2nd ed. New York:John Wiley & Sons, 2009
[25]  Ou Jikun. Selection of Quasi-Accurate Observations and "Hive off" Phenomena About the Estimators of Real Errors[J]. Acta Geodaetica et Cartographica Sinica, 2000, 29(1):5-10(欧吉坤. 拟准观测的选取和真误差估值的"分群"现象[J]. 测绘学报, 2000, 29(1):5-10)
[26]  Han Baomin, Ou Jikun, Chai Yanju. Detecting and Repairing the Gross Errors and Cycle Slips by QUAD Method[J]. Geomatics and Information Science of Wuhan University, 2002, 27(3):246-250(韩保民, 欧吉坤, 柴艳菊. 用拟准检定法探测和修复GPS数据中的粗差和周跳[J]. 武汉大学学报·信息科学版, 2002, 27(3):246-250)
[27]  Hekimoglu S. Robustifying Conventional Outlier Detection Procedures[J]. Journal of Surveying Engineering, 1999, 125(2):69-86
[28]  Rousseeuw P J, Leroy A M. Robust Regression and Outlier Detection[M]. New York:John Wiley & Sons, 1987
[29]  Baselga S. Critical Limitation in Use of τ Test for Gross Error Detection[J]. Journal of Surveying Engineering, 2007, 133(2):52-55

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133