|
- 2018
基于局域自适应信息理论测度学习的高光谱目标探测方法
|
Abstract:
传统基于信号检测的目标探测方法需要依赖特定的统计假设,只有在符合条件的情况下才能取得较好的目标探测结果。为了克服这一缺陷,提出了一种基于局域自适应的信息理论测度学习方法。首先将信息理论测度学习方法作为目标主函数,然后加以局域自适应决策法则进行约束,自适应地减小相似样本对距离,增大不相似样本对距离,使得在考虑阈值的同时兼顾测度学习前后距离的改变情况来进行目标探测决策,从而更好地实现目标探测。实验证明,该方法与其他经典目标探测方法或测度学习方法相比,可以更好地实现目标与背景分离,能够更有效地对高光谱影像数据进行目标探测
[1] | Chen Yong, Du Bo, Zhang Lefei. A Hybrid Detector for High Resolution Remote Sensing Image Based on Spectral Matching and Tensor Analysis[J]. Geomatics and Information Science of Wuhan University, 2013, 38(3):274-277(陈勇,杜博,张乐飞.一种融合光谱匹配和张量分析的高分辨率遥感影像目标探测器[J].武汉大学学报·信息科学版, 2013, 38(3):274-277) |
[2] | Xiang S M, Nie F P, Zhang C S. Learning a Maha-lanobis Distance Metric for Data Clustering and Classification[J]. Pattern Recognition, 2008, 41(12):3600-3612 |
[3] | Chen Y, Nasrabadi N M, Tran T D. Sparse Representation for Target Detection in Hyperspectral Imagery[J].IEEE Journal of Selected Topics in Signal Processing, 2011, 5(3):629-640 |
[4] | Tao D, Li X, Wu X, et al. Geometric Mean for Subspace Selection[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009, 31(2):260-274 |
[5] | Dong Y N, Du B, Zhang L F, et al. Dimensionality Reduction and Classification of Hyperspectral Images Using Ensemble Discriminative Local Metric Learning[J]. IEEE Transactions on Geoscience and Remote Sensing, 2017, 55(5):2509-2524 |
[6] | Davis J V, Dhillon I S. Differential Entropic Clustering of Multivariate Gaussians[C]. The 19th Annual Conference on Neural Information Processing Systems, Vancouver, Canada, 2006 |
[7] | Tao D, Tang X, Li X,et al. Asymmetric Bagging and Random Subspace for Support Vector Machines-Based Relevance Feedback in Image Retrieval[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2006, 28(7):1088-1099 |
[8] | Goldberger J, Hinton G,Roweis S, et al. Neighbourhood Components Analysis[C]. Advances in Neural Information Processing Systems, Cambridge, United Kingdom, 2005 |
[9] | Manolakis D, Shaw G. Detection Algorithms for Hyperspectral Imaging Applications[J]. IEEE Signal Processing Magazine, 2002, 19(1):29-43 |
[10] | Du B, Zhang L P. Target Detection Based on a Dynamic Subspace[J]. Pattern Recognition, 2014, 47(1):344-358 |
[11] | Du B, Zhang L P. A Discriminative Metric Learning Based Anomaly Detection Method[J]. IEEE Tran-sactions on Geoscience and Remote Sensing, 2014, 52(11):6844-6857 |
[12] | Davis J, Kulis V B, Jain P, et al. Information-Theoretic Metric Learning[C]. The 24th International Conference on Machine Learning, Corvallis, USA, 2007 |
[13] | Capobianco L, Garzelli A, Camps-Valls G. Target Detection with Semisupervised Kernel Orthogonal Subspace Projection[J]. IEEE Transactions on Geoscience and Remote Sensing, 2009, 47(11):3822-3833 |
[14] | Dong Y N, Zhang L P, Zhang L F, et al. Maximum Margin Metric Learning Based Target Detection for Hyperspectral Images[J]. ISPRS Journal of Photogrammetry Remote Sensing, 2015, 108:138-150 |
[15] | Li Z, Chang S Y, Liang F, et al. Learning Locally-Adaptive Decision Functions for Person Verification[C]. 2013 IEEE Conference on Computer Vision and Pattern Reognition, Portland, USA, 2013 |
[16] | Kraut S, Scharf L L. The CFAR Adaptive Subspace Detector is a Scale-Invariant GLRT[J]. IEEE Transactions on Signal Processing, 1999, 47(9):2538-2541 |
[17] | Harsanyi J C. Detection and Classification of Subpixel Spectral Signatures in Hyperspectral Image Sequences[D]. Baltimore:University of Maryland Baltimore County, 1993 |
[18] | Kraut S, Scharf L L, McWhorter L T. AdaptiveSubspace Detectors[J]. IEEE Transactions on Signal Processing, 2001, 49(1):1-16 |
[19] | Plaza A, Martínez P, Plaza J, et al. DimensionalityReduction and Classification of Hyperspectral Image Data Using Sequences of Extended Morphological Transformations[J]. IEEE Transactions on Geoscience and Remote Sensing, 2005, 43(3):466-479 |
[20] | Xing E P, Ng A Y, Jordan M I,et al. Distance Metric Learning, with Application to Clustering with Side-information[C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2002 |
[21] | Tao D, Li X, Wu X, et al. General Tensor Discri-minant Analysis and Gabor Features for Gait Recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2007, 29(10):1700-1715 |
[22] | Dong Y N, Du B, Zhang L P. Target Detection Based on Random Forest Metric Learning[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(4):1830-1838 |