|
- 2018
出租车轨迹数据的地域间移动模式分析
|
Abstract:
基于地域的移动模式(zone-based movement pattern,ZMP)的发掘通过对出租车轨迹的聚类分析,同步发掘地域与移动轨迹。该方法通过ZMP的合并达到新地域发掘的目的,并加以距离和专题属性组成的相邻约束以保留移动的方向性、地域的功能属性以及地域间的距离关系。通过连接矩阵迭代计算得到最优合并的ZMP进行合并,从而发掘ZMP,同时通过覆盖度、精准度以及基于这两者的平衡评估因子等对合并得到的ZMP进行评定。通过现实世界的出租车数据进行实验,结果表明该方法高效可行,能合理地实现合并现有区以发掘新地域
[1] | Qi G, Li X, Li S, et al. Measuring Social Functions of City Regions from Large-Scale Taxi Behaviors[C]. IEEE International Conference on Pervasive Computing and Communications, Seattle, USA, 2011 |
[2] | Castro P S, Zhang D, Chen C, et al. From Taxi GPS Traces to Social and Community Dynamics:A Survey[J]. ACM Computing Surveys, 2014, 46(2):1167-1182 |
[3] | Liu Yu, Kang Chaogui, Wang Fahui. Towards Big Data-Driven Human Mobility Patterns and Models[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):660-666(刘瑜, 康朝贵, 王法辉. 大数据驱动的人类移动模式和模型研究[J]. 武汉大学学报·信息科学版, 2014, 39(6):660-666) |
[4] | Deng M, Liu Q, Li G, et al. Field-Theory based Spatial Clustering Method[J]. Journal of Remote Sensing, 2010, 14(4):702-717 |
[5] | Kim K, Oh K, Lee Y K, et al. An Analysis on Movement Patterns Between Zones Using Smart Card Data in Subway Networks[J]. International Journal of Geographical Information Science, 2014, 28(9):1781-1801 |
[6] | Ren huiJun, Xu Tao, Li Xiang. Personal Profile Mining Based on Mobile Phone Location Data[J]. Geomatics and Information Science of Wuhan University, 2014, 39(6):739-744(任慧君, 许涛, 李响. 利用车载GPS轨迹数据实现公交车驾驶安全性分析[J]. 武汉大学学报·信息科学版, 2014, 39(6):739-744) |
[7] | Moreno-Regidor P, Manso-Callejo M A. Zone Design of Specific Sizes Using Adaptive Additively Weighted Voronoi Diagrams[J]. International Journal of Geographical Information Science, 2012, 26(10):1811-1829 |
[8] | Liu Y, Kang C, Gao S, et al. Understanding Intra-Urban Trip Patterns from Taxi Trajectory Data[J]. Journal of Geographical Systems, 2012, 14(4):463-483 |
[9] | Gold C M. Problems with Handling Spatial Data-The Voronoi Approach[J]. CISM Journal ACSGC, 1994, 45(1):65-80 |
[10] | Munizaga M A, Palma C. Estimation of a Disaggregate Multimodal Public Transport Origin-Destination Matrix from Passive Smartcard Data from Santiago, Chile[J]. Transportation Research Part C, 2012, 24(9):9-18 |
[11] | Zhang T, Ramakrishnan R, Livny M. BIRCH:An Efficient Data Clustering Method for very Large Databases[C]. The International Conference Management of Data, Montreal, Canada, 1996 |
[12] | Fusco G, Caglioni M. Hierarchical Clustering Through Spatial Interaction Data. The Case of Commuting Flows in South-Eastern France[C]. International Conference on Computational Science and Its Applications, Santander, Spain, 2011 |
[13] | Joh C H, Arentze T A, Timmermans H J P. Multidimensional Sequence Alignment Methods for Activity-Travel Pattern Analysis:A Comparison of Dynamic Programming and Genetic Algorithms[J]. Geographical Analysis, 2001, 33(3):247-270 |
[14] | Srinivasan S, Ferreira J. Travel Behavior at the Household Level:Understanding Linkages with Residential Choice[J]. Transportation Research Part D:Transport and Environment, 2002, 7(3):225-242 |
[15] | Chu K K A, Chapleau R. Enriching Archived Smart Card Transaction Data for Transit Demand Mode-ling[J]. Transportation Research Record:Journal of the Transportation Research Board, 2008, 2063(1):63-72 |
[16] | Macqueen J. Some Methods for Classification and Analysis of Multivariate Observations[C]. The 5th Berkeley Symposium on Mathematical Statistics and Probability, Berkeley, USA, 1967 |
[17] | Ba??o F, Lobo V, Painho M. Applying Genetic Algorithms to Zone Design[J]. Soft Computing, 2005, 9(5):341-348 |
[18] | Hoffman M, Wilson S P, White P. Automated Identification of Linked Trips at Trip Level Using Electronic Fare Collection Data[C]. The Transportation Research Board 88th Annual Meeting, Washington D C, USA, 2009 |
[19] | Martin D. Extending the Automated Zoning Procedure to Reconcile Incompatible Zoning Systems[J]. International Journal of Geographical Information Science, 2003, 17(2):181-196 |