|
- 2018
校准三维模型基矩阵的函数映射的对应关系计算
|
Abstract:
在利用函数映射计算模型间对应关系时,提出了一种校准三维几何模型之间基矩阵的新方法,将模型间对应关系的构建转化为由模型特征函数构建的基矩阵之间的校准运算。首先计算三维模型的Laplace算子,获得模型的特征值和特征向量,并利用所得到的特征向量构建基矩阵;其次,提出了协方差的最小值校准算法,以计算模型基矩阵之间的校准矩阵S,并用矩阵S对两个模型的函数基进行校准;最后,计算校准模型所有点的高斯曲率来采样源模型尖端特征点,并在校准后的目标模型上遍历所有点,以寻求最优对应点来构建等距变换(或近似等距变换)的三维模型间的对应关系。通过计算采样点与最优对应点的测地错误,以衡量所提算法的匹配准确率。实验结果表明,与已有算法相比,本算法可以较为准确地构建两个或多个模型间的对应关系,同时也克服了模型自身对称性影响对应关系计算的问题
[1] | Ovsjanikov M, Merigot Q, Patraucean V, et al.Shape Matching via Quotient Spaces[J]. Computer Graphics Forum, 2013, 32(5):1-11 |
[2] | Shtern A, Kimmel R.Matching the LBO Eigenspace of Non-rigid Shapes via High Order Statistics[J]. Axioms, 2014, 3(3):300-319 |
[3] | Kilian M, Mitran N J, Pottmann H. GeometricModeling in Shape Space[J]. ACM Transactions on Graphics, 2007, 26(3):1-8 |
[4] | Ovsjanikov M, Sun Jian, Guibas L. Global Intrinsic Symmetries of Shapes[J]. Computer Graphics Forum, 2008, 27(5):1341-1348 |
[5] | Sahillioglu Y, Yemez Y. Coarse-to-fine Combinatorial Matching for Dense Isometric Shape Correspondence[J]. Computer Graphics Forum, 2011, 30(5):1461-1470 |
[6] | Ovsjanikov M, Chen M B, Solomon J, et al. Functional Maps:A Flexible Representation of Maps between Shapes[J]. ACM Transactions on Graphics, 2012, 31(4):1-11 |
[7] | Sun J, Ovsjanikov M, Guibas J. A Concise and Provably Informative Multi-scale Signature Based on Heat Diffusion[J]. Computer Graphics Forum, 2009, 28(5):1383-1392 |
[8] | Bronstein M, Kokkinos I. Scale-invariant Heat Kernel Signatures for Non-rigid Shape Recognition[C]. 2010 IEEE Conference on Computer Vision and Pattern Recognition(CVPR'10), San Francisco, USA, 2010 |
[9] | Golovinskiy A, Funkhouser T. Consistent Segmen-tation of 3D Models[J]. Computers & Graphics, 2009, 33(3):262-269 |
[10] | Schreiner J, Asirvatham A, Praun E, et al. Inter-surface Mapping[J]. ACM Transactions on Graphi-cs, 2004, 23(3):870-877 |
[11] | Moore A. An Introductory Tutorial on Kd-Trees[C]. IEEE Colloquium on Quantum Computing:Theory, Applications & Implications, London, UK, 1997 |
[12] | Kim V, Lipman Y, Funkhouser T.Blended Intrinsic Maps[J]. ACM Transactions on Graphics, 2011, 30(4):76-79 |
[13] | Litman R, Bronstein A M. Learning Spectral Descriptors for Deformable Shape Correspondence[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2014, 36(1):171-180 |
[14] | Wuhrer S, Xi P, Shu C. Human Shape Correspondence with Automatically Predicted Landmarks[J]. Machine Vision and Applications, 2012, 23(4):821-830 |
[15] | Allen B, Curless B, Popovic Z. The Space of Human Body Shapes:Reconstruction and Parameteri-zation from Range Scans[J]. ACM Transactions on Graphics, 2003, 22(3):587-594 |
[16] | Zhang H, Kaick O V, Dyer R. Spectral Methods for Mesh Processing and Analysis[J]. Computer Graphics Forum, 2010, 29(6):1865-1894 |
[17] | Aubry M, Schlickewei U, Cremers D. The Wave Kernel Signature:A Quantum Mechanical Approach to Shape Analysis[C]. 2011 IEEE Conference on Computer Vision Workshops, Barcelona, Spain, 2011 |
[18] | van Kaick O, Zhang H, Haman G, et al. A Survey on Shape Correspondence[J]. Computer Graphics Forum, 2011, 30(6):1681-1707 |
[19] | Alexa M. Recent Advances in Mesh Morphing[J]. Computer Graphics Forum, 2002, 21(2):173-198 |
[20] | Jain V, Zhang H. A Spectral Approach to Shape-based Retrieval of Articulated 3D Models[J]. Computer-Aided Design, 2007, 39(5):398-407 |
[21] | Bronstein A M, Bronstein M M, Kimmel R. Numerical Geometry of Non-rigid Shapes[M]. Berlin, Heidelberg:Springer, 2009 |
[22] | Ruggeri M R, Patane G, Spagnuolo M, et al. Spectral-driven Isometry-invariant Matching of 3D Shapes[J]. International Journal of Computer Vision, 2010, 89(3):248-265 |
[23] | Wu Weiyong, Wang Yinghui. Approach of Similarity Analysis for Non-rigid Models Combining Diffusion Distance with MDS[J]. Application Research of Computers, 2014, 31(2):605-607(吴维勇, 王英慧. 基于扩散距离和MDS的非刚性模型相似性分析[J]. 计算机应用研究, 2014, 31(2):605-607) |