|
- 2018
基于邻近模式的多比例尺居民地松弛迭代匹配
|
Abstract:
空间目标匹配是实现多源空间信息融合、空间对象变化检测与动态更新的重要前提。针对多比例尺居民地匹配问题,提出了一种基于邻近模式的松弛迭代匹配方法。该方法首先利用缓冲区分析与空间邻近关系检测候选匹配目标与邻近模式,同时计算候选匹配目标或邻近模式间的几何相似性得到初始匹配概率矩阵;然后对邻近候选匹配对进行上下文兼容性建模,利用松弛迭代方法求解多比例尺居民地的最优匹配模型,选取匹配概率最大并满足上下文一致的候选匹配目标或邻近模式为最终匹配结果。实验结果表明,所提出的多比例尺居民地匹配方法具有较高的匹配精度,能有效克服形状轮廓同质化与非均匀性偏差问题,并准确识别1∶M、M∶N的复杂匹配关系
[1] | Kim J O, Yu K, Heo J, et al. A New Method for Matching Objects in Two Different Geospatial Datasets Based on the Geographic Context[J].<em>Computers & Geosciences</em>, 2010, 36(9):1115-1122 |
[2] | Jiao Yangyang, Wang Hui, Zhai Renjian. Matching Method for Areal Feature Considering Context-Dependent Similarity[J]. <em>Journal of Liaoning Technical University (Natural Science)</em>,2013, 32(7):947-952(焦洋洋, 王卉, 翟仁健. 顾及邻域相似性的面要素匹配方法[J]. 辽宁工程技术大学学报(自然科学版), 2013, 32(7):947-952) |
[3] | Zhang X, Ai T, Stoter J,et al. Data Matching of Building Polygons at Multiple Map Scales Improved by Contextual Information and Relaxation[J]. <em>ISPRS Journal of Photogrammetry and Remote Sensing, 2014, 92(6):147-163</em> |
[4] | Hu Jiping. Area Target Data Matching Method of Different Scales[J].<em>Applied Technology</em>, 2016(4):89-92(胡继萍. 不同比例尺面目标数据匹配方法[J]. 科技创新与生产力, 2016(4):89-92) |
[5] | Zhang Liping, Guo Qingsheng, Sun Yan. The Method of Matching Residential Features in Topographic Maps at Neighboring Scales[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2008, 33(6):604-607(章莉萍, 郭庆胜, 孙艳. 相邻比例尺地形图之间居民地要素匹配方法研究[J]. 武汉大学学报·信息科学版, 2008, 33(6):604-607) |
[6] | Wang Xiao, Qian Haizhong, He Haiwei, et al. Matching Multi-source Areal Habitations with Ske-leton Line Mesh of Blank Region[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2015, 44(8):927-935(王骁, 钱海忠, 何海威,等. 利用空白区域骨架线网眼匹配多源面状居民地[J]. 测绘学报, 2015, 44(8):927-935) |
[7] | Yang B, Zhang Y, Luan X. A Probabilistic Relaxation Approach for Matching Road Networks[J]. <em>International Journal of Geographical Information Science</em>, 2013, 27(2):319-338 |
[8] | Duchêne C, Bard S, Barillot X, et al. Quantitative and Qualitative Description of Building Orientation[C]. The 5th Workshop on Progress in Automated Map Generalisation, Barcelona, 2003 |
[9] | Hao Yanling, Tang Wenjing, Zhao Yuxin, et al. Areal Feature Matching Algorithm Based on Spatial Similarity[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2008, 37(4):501-506(郝燕玲, 唐文静, 赵玉新,等. 基于空间相似性的面实体匹配算法研究[J]. 测绘学报, 2008, 37(4):501-506) |
[10] | Li Qingquan. Li Deren. Big Data GIS[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2014, 39(6):641-644(李清泉, 李德仁. 大数据GIS[J]. 武汉大学学报·信息科学版, 2014, 39(6):641-644) |
[11] | Zhang Qiaoping, Li Deren, Gong Jianya. Areal Feature Matching Among Urban Geographic Databases[J]. <em>Journal of Remote Sensing</em>, 2004, 8(2):107-112(张桥平, 李德仁, 龚健雅. 城市地图数据库面实体匹配技术[J]. 遥感学报, 2004, 8(2):107-112) |
[12] | Zhang Jing, Zhou Ye, Liu Yu. An Improved Algorithm for SDS Model Based Polygon Simplification and Aggregation[J]. <em>Journal of Image and Graphics</em>, 2006, 11(7):1010-1016(张晶,周烨,刘瑜. SDS模型化简合并多边形的一个改进算法研究[J].中国图象图形学报, 2006, 11(7):1010-1016) |
[13] | Zhao Dongbao, Sheng Yehua, Zhang Ka. An Algorithm for Multi-Scale One-to-many Areal Feature Matching Based on Geometry Moments and Overly Analysis[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2011, 36(11):1371-1375(赵东保, 盛业华, 张卡. 利用几何矩和叠置分析进行多尺度面要素自动匹配[J]. 武汉大学学报·信息科学版, 2011, 36(11):1371-1375) |
[14] | Fan H, Zipf A, Fu Q,et al. Quality Assessment for Building Footprints Data on OpenStreetMap[J]. <em>International Journal of Geographical Information Science</em>, 2014, 28(4):700-719 |
[15] | Ai T, Cheng X, Liu P, et al. A Shape Analysis and Template Matching of Building Features by the Fourier Transform Method[J].<em> Computers, Environment and Urban Systems</em>, 2013, 41(5):219-233 |
[16] | Xu Junkui, Wu Fang, Qian Haizhong, et al. Settlement Matching Algorithm Using Spatial Similarity Relations as Constraints[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2013, 38(4):484-488(许俊奎, 武芳, 钱海忠,等. 一种空间关系相似性约束的居民地匹配算法[J]. 武汉大学学报·信息科学版, 2013, 38(4):484-488) |
[17] | Parent P, Zucker S W. Radial Projection:An Efficient Update Rule for Relaxation Labeling[J]. <em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>, 1989, 11(8):886-889 |
[18] | Huh Y, Kim J, Lee J, et al. Identification of Multi-scale Corresponding Object-Set Pairs Between Two Polygon Datasets with Hierarchical Co-clustering[J]. <em>ISPRS Journal of Photogrammetry and Remote Sensing</em>, 2014, 88(2):60-68 |
[19] | Xu Junkui, Wu Fang, Zhu Jiandong, et al. A Multi-to-Multi Matching Algorithm Between Neighborhood Scale Settlement Data[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2014, 39(3):340-345(许俊奎, 武芳, 朱建东,等. 相邻比例尺居民地匹配[J]. 武汉大学学报·信息科学版, 2014, 39(3):340-345) |
[20] | Deng M, Liu Q, Cheng T, et al. An Adaptive Spatial Clustering Algorithm Based on Delaunay Triangulation[J]. <em>Computers, Environment and Urban Systems</em>, 2011, 35(4):320-332 |
[21] | Jiang B. Volunteered Geographic Information and Computational Geography:New Perspectives[M]//Sui D, Elwood S, Goodchild M. Crowdsourcing Geographic Knowledge. Dordrecht:Springer, 2013 |
[22] | Chen Jun, Li Zhilin, Jiang Jie, et al. Key Issues of Continuous Updating of Geo-spatial Databases[J]. <em>Geomatics World</em>, 2004, 2(5):1-5(陈军, 李志林, 蒋捷,等. 基础地理数据库的持续更新问题[J]. 地理信息世界,2004,2(5):1-5) |
[23] | Zhang Yunfei, Yang Bisheng, Luan Xuechen. Automated Matching Urban Road Networks Using Pro-babilistic Relaxation[J]. <em>Acta Geodaetica et Cartographica Sinica</em>, 2012, 41(6):933-939(张云菲, 杨必胜, 栾学晨. 利用概率松弛法的城市路网自动匹配[J]. 测绘学报, 2012, 41(6):933-939) |