|
- 2018
利用多探测任务数据建立新一代月球全球控制网的方案与关键技术
|
Abstract:
目前广泛应用的月球统一控制网2005(Unified Lunar Control Network 2005,ULCN2005)是由1994年的克莱门汀(Clementine)影像和之前的遥感数据联合平差构建的。提出利用21世纪获取的分辨率更高、精度更好的多探测任务数据,建立新一代月球控制网的方案与关键技术。该方案基于全球覆盖的月球遥感影像与激光高度计数据的联合平差,同时利用在月球轨道侦察器窄角相机影像上能高精度定位的绝对定位精度在厘米级的5个激光棱角反射标志点作为绝对控制。此外,还通过新的无线电测量方法对嫦娥三号着陆器进行高精度定位,将其定位结果也作为一个新的绝对控制数据。新一代控制网构建的重点有高精度的轨道器严密及通用成像几何模型的构建、多任务多模态数据间的多尺度特征提取与匹配、最优化多重覆盖影像的选择、全月球整体平差等。基于新的数据和技术,新一代月球控制网的精度和点的密度有望远超ULCN2005
[1] | Schimerman L A. Lunar Cartographic Dossier, Volume I[R]. NASA and the Defense Mapping Agency, St. Louis, Missouri, USA, 1973 |
[2] | Scholten F, Oberst J J, Matz K D, et al. GLD100:The Near-Global Lunar 100 m Raster DTM from LROC WAC Stereo Image Data[J]. Journal of Geo-physical Research, 2012,117(E12):E00H17, DOI:10.1029/2011JE003926 |
[3] | Liu B, Xu B, Di K, et al. A Solution to Low RFM Fitting Precision of Planetary Orbiter Images Caused by Exposure Time Changing[J]. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2016,43:441-448 |
[4] | Di Kaichang, Liu Bin, Liu Zhaoqin, et al. Review and Prospect of Lunar Mapping Using Remote Sensing Data[J].Journal of Remote Sensing, 2016, 20(5):1230-1242(邸凯昌,刘斌,刘召芹,等. 月球遥感制图回顾与展望[J]. 遥感学报, 2016,20(5):1230-1242) |
[5] | Liu Z, Di K, Peng M, et al. High Precision Lan-ding Site Mapping and Rover Localization for Chang'E-3 Mission[J]. Science China-Physics Mechanics & Astronomy, 2015, 58(1):1-11 |
[6] | Mazarico E, Rowlands D D, Neumann G A, et al. Orbit Determination of the Lunar Reconnaissance Orbiter[J]. Journal of Geodesy, 2012, 86(3):193-207 |
[7] | Zhao B, Yang J, Wen D, et al. Overall Scheme and On-orbit Images of Chang'E-2 Lunar Satellite CCD Stereo Camera[J]. Sci China Technol Sci, 2011, 54(9):2237-2242 |
[8] | Wu B, Hu H, Guo J. Integration of Chang'E-2 Imagery and LRO Laser Altimeter Data with a Combined Block Adjustment for Precision Lunar Topographic Modeling[J]. Earth and Planetary Science Letters, 2014, 391:1-15 |
[9] | Liu B, Liu Y, Di K, et al. Block Adjustment of Chang'E-1 Images Based on Rational Function Mo-del[C]. The 18th National Symposium on Remote Sensing of China, Beijing, 2014 |
[10] | Kang Z, Luo Z, Hu T, et al. Automatic Extraction and Identification of Lunar Impact Craters Based on Optical Data and DEMs Acquired by the Chang'E Satellites[J]. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 2015, 8(10):4751-4761 |
[11] | Lowe D G. Distinctive Image Features from Scale-Invariant Keypoints[J]. International Journal of Computer Vision, 2004, 60(2):91-110 |
[12] | Kirk R, Archinal B, Gaddis L, et al. Lunar Cartography:Progress in the 2000s and Prospects for the 2010s[J]. International Archives of the Photogrammery, Remote Sensing and Spatial Information Sciences, 2012,39(B4):489-494 |
[13] | Zuo W, Li C L, Zhang Z B. Scientific Data and Their Release of Chang'E-1 and Chang'E-2[J]. China J Geochem, 2014,33:24-44 |
[14] | Di K, Liu Y, Liu B, et al. A Self-calibration Bundle Adjustment Method for Photogrammetric Processing of Chang'E-2 Stereo Lunar Imagery[J]. IEEE Transaction on Geoscience and Remote Sensing, 2014, 52(9):5432-5442 |
[15] | Li C L, Ren X, Liu J J, et al. A New Global and High Resolution Topographic Map Product of the Moon from Chang'E-2 Image Data[C]. The 46th Lunar Planetary Science Conference, Woodlands, Texas, USA, 2015 |
[16] | Smith D E, Zuber M T, Jackson G B, et al. The Lunar Orbiter Laser Altimeter Investigation on the Lunar Reconnaissance Orbiter Mission[J]. Space Science Review, 2010, 150:209-241 |
[17] | Ping J S. Experiment of Lunar Radio Phase Ranging Using Chang'E-3 Lander[C]. The 47th Lunar and Planetary Science Conference, Woodlands, Texas, USA, 2016 |
[18] | Estes N M, Hanger C D, Licht A A, et al. Lunaserv Web Map Service:History, Implementation Details, Development, and Uses[C]. The 44th Lunar Planet Sci Conf, Woodlands, Texas, USA, 2013 |
[19] | Haruyama J, Hara S, Hioki K, et al. Lunar Global Digital Terrain Model Dataset Produced from SELENE (Kaguya) Terrain Camera Stereo Observations[C]. The 43rd Lunar and Planetary Science Conference, Woodlands, Texas, USA, 2012 |
[20] | Liu Y, Di K. Evaluation of Rational Function Model for Geometric Mo-deling of Chang'E-1 CCD Images[J]. International Achieves of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 2011, 38:121-125 |
[21] | Bay H, Ess A, Tuytelaars T, et al. SURF:Speeded Up Robust Features[J]. Computer Vision and Image Understanding (CVIU), 2008, 110(3):346-359 |
[22] | Wu B, Liu W C. Calibration of Boresight Offset of LROC NAC Imagery for Precision Lunar Topographic Mapping[J]. ISPRS Journal of Photogrammetry and Remote Sensing, 2017,128:372-387 |
[23] | Smith D E, Zuber M T, Neumann G A, et al. Summary of the Results from the Lunar Orbiter Laser Altimeter After Seven Years in Lunar Orbit[J]. Icarus, 2017, 283:70-91 |
[24] | Liu Bin, Di Kaichang, Wang Baofeng, et al. Positioning and Precision Validation of Chang'E-3 Lander Based on Multiple LRO NAC Images[J]. Chinese Science Bulletin, 2015,60(28-29):2750-2757(刘斌,邸凯昌,王保丰, 等. 基于LRO NAC影像的嫦娥三号着陆点高精度定位与精度验证[J]. 科学通报,2015, 60(28-29):2750-2757) |
[25] | Robinson M, Brylow S, Tschimmel M, et al. Lunar Reconnaissance Orbiter Camera (LROC) Instrument Overview[J]. Space Science Reviews, 2010, 150:81-124 |
[26] | Barker M K, Mazarico E, Neumann G A, et al. A New Lunar Digital Elevation Model from the Lunar Orbiter Laser Altimeter and SELENE Terrain Ca-mera[J]. Icarus, 2016, 273:346-355 |
[27] | Speyerer E J, Wagner R V, Robinson M S, et al. Pre-flight and Onorbit Geometric Calibration of the Lunar Reconnaissance Orbiter Camera[J]. Space Science Reviews, 2016, 200:357-392 |
[28] | Alcantarilla P F, Nuevo J, Bartoli A. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces[C]. British Machine Vision Confe-rence, Bristol, UK, 2013 |
[29] | Becker K J, Archinal B A, Hare T M, et al. Criteria for Automated Identification of Stereo Image Pairs[C]. The 46th Lunar and Planetary Science Conference, Woodlands, Texas, USA, 2015 |
[30] | Di K, Xu B, Liu B, et al. Geopositioning Precision Analysis of Multiple Image Triangulation Using LRO NAC Lunar Images[C]. The 23rd ISPRS Congress, Commission IV, Prague, Czech, 2016 |
[31] | Davies M E. The Unified Lunar Control Network[J]. Journal of Geophysics Research, 1994,99(E11):23211-23214 |
[32] | Edwards K E. Global Digital Mapping of the Moon[C]. The 27th Annual Lunar and Planetary Science Conference, Houston, Texas, USA, 1996 |
[33] | Archinal B A, Rosiek M R, Kirk R L, et al. The Unified Lunar Control Network 2005[OL]. http://pubs.usgs.gov/of/2006/1367/ULCN2005-OpenFile.pdf, 2006 |
[34] | Archinal B A, Rosiek M R, Kirk R L, et al. Final Completion of the Unified Lunar Control Network 2005 and Topographic Model[C]. The 38th Lunar and Planetary Science Conference, League City, Texas, USA, 2007 |
[35] | Zuber M T, Smith D E, Watkins M M, et al. Gra-vity Field of the Moon from the Gravity Recovery and Interior Laboratory (GRAIL) Mission[J]. Science, 2013, 339(6120):668-671 |