全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于2D-3D语义传递的室内三维点云模型语义分割
Semantic Segmentation of Indoor 3D Point Cloud Model Based on 2D-3D Semantic Transfer

DOI: 10.13203/j.whugis20180190

Keywords: 语义三维点云模型,语义传递,语义标记,点云分类,
semantic 3D point cloud model
,semantic transfer,semantic mark,point cloud classification

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对现有三维点云模型重建对象化和结构化信息缺失的问题,提出一种基于图模型的二维图像语义到三维点云语义传递的算法。该算法利用扩展全卷积神经网络提取2D图像的室内空间布局和对象语义,基于以2D图像超像素和3D点云为结点构建融合图像间一致性和图像内一致性的图模型,实现2D语义到3D语义的传递。基于点云分类实验的结果表明,该方法能够得到精度较高的室内三维点云语义分类结果,点云分类的精度可达到73.875 2%,且分类效果较好

References

[1]  Lu Xueliang, Tong Xiaochong, Zhang Yongsheng, et al. An Improved Region-Growing Surface Triangulation Algorithm for Urban Dense Point Cloud[J].Geomatics and Information Science of Wuhan University, 2016, 41(6):832-837(卢学良, 童晓冲, 张永生,等. 城市密集点云的区域生长表面构网改进算法[J]. 武汉大学学报·信息科学版, 2016, 41(6):832-837)
[2]  Tang Shengjun. Multi-view Image Enhancement of RGB-D Indoor High-Precision 3D Mapping Method[D]. Wuhan:Wuhan University, 2017(汤圣君. 多视图像增强的RGB-D室内高精度三维测图方法[D]. 武汉:武汉大学, 2017)
[3]  Newcombe R A, Izadi S, Hilliges O, et al. Kinect Fusion:Real-time Dense Surface Mapping and Tracking[C]. IEEE International Symposium on Mixed and Augmented Reality, Austin, TX, USA, 2011
[4]  Furukawa Y, Ponce J. Accurate, Dense, and Robust Multiview Stereopsis[J].IEEE Transactions on Pattern Analysis and Machine Intelligence, 2010, 32(8):1362-1376
[5]  Wu C. VisualSFM:A Visual Structure from Motion System[OL]. http://ccwu.me/vsfm/,2011
[6]  Koppula H S, Anand A, Joachims T, et al. Semantic Labeling of 3D Point Clouds for Indoor Scenes[C]. Advances in Neural Information Processing Systems, Granada, Spain, 2011
[7]  Anand A, Koppula H S, Joachims T, et al. Contextually Guided Semantic Labeling and Search for Three-dimensional Point Clouds[J].The International Journal of Robotics Research, 2013, 32(1):19-34
[8]  Xiong X, Munoz D, Bagnell J A, et al. 3-D Scene Analysis via Sequenced Predictions over Points and Regions[C]. IEEE International Conference on Robotics and Automation, Shanghai, China, 2011
[9]  Kalogerakis E, Hertzmann A, Singh K. Learning 3D Mesh Segmentation and Labeling[J]. ACM Transactions on Graphics, 2010, 29(4):1-12
[10]  Lai K, Fox D. Object Recognition in 3D Point Clouds Using Web Data and Domain Adaptation[J].The International Journal of Robotics Research, 2010, 29(8):1019-1037
[11]  Munoz D, Bagnell J A, Hebert M. Stacked Hierarchical Labeling[C]//European Conference on Computer Vision. Berlin, Heidelberg:Springer, 2010
[12]  Deng J, Dong W, Socher R, et al. ImageNet:A Large-Scale Hierarchical Image Database[C]. IEEE Conference on CVPR, Vancouver, BC, Canada, 2009
[13]  Kuettel D, Guillaumin M, Ferrari V. Segmentation Propagation in ImageNet[C]. European Conference on Computer Vision, Florence, Italy, 2012
[14]  Long J, Shelhamer E, Darrell T. Fully Convolutional Networks for Semantic Segmentation[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015
[15]  Mallya A, Lazebnik S. Learning Informative Edge Maps for Indoor Scene Layout Prediction[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015
[16]  Jia Y, Shelhamer E, Donahue J, et al. Caffe:Convo-lutional Architecture for Fast Feature Embedding[C].The 22nd ACM International Conference on Multimedia, Orlando, Florida, USA, 2014
[17]  Gupta S, Arbelaez P, Malik J. Perceptual Organization and Recognition of Indoor Scenes from RGB-D Images[C]. IEEE Conference on CVPR, Portland, Oregon, 2013
[18]  Achanta R, Shaji A, Smith K, et al. SLIC Superpixels Compared to State-of-the-Art Superpixel Methods[J]. IEEE Transactions on Pattern Analy-sis and Machine Intelligence, 2012, 34(11):2274-2282
[19]  Murphy K P, Torralba A, Freeman W T. Using the Forest to See the Trees:A Graphical Model Relating Features, Objects, and Scenes[C]. Advances in Neural Information Processing Systems, Vancouver and Whistler, British Columbia, Canada, 2004
[20]  Boulch A, Guerry J, Saux B L, et al. SnapNet:3D Point Cloud Semantic Labeling with 2D Deep Segmentation Networks[J]. Computers & Graphics, 2017,71:189-198
[21]  Wu Z, Song S, Khosla A, et al. 3D ShapeNets:A Deep Representation for Volumetric Shapes[C]. IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 2015
[22]  Yuan Li, Chen Qinghu, Liao Haibin, et al. Rapid Three-Dimensional Reconstruction of Face with Single Vision[J].Geomatics and Information Science of Wuhan University, 2012, 37(4):487-491(袁理, 陈庆虎, 廖海斌, 等. 单视影像下的人脸快速三维重建[J]. 武汉大学学报·信息科学版, 2012, 37(4):487-491)
[23]  Russell B C, Torralba A, Murphy K P, et al. LabelMe:A Database and Web-Based Tool for Image Annotation[J].International Journal of Computer Vision, 2008, 77(1-3):157-173
[24]  Liu Rufei, Lu Xiushan, Yue Guowei, et al. An Automatic Extraction Method of Road from Vehicle-Borne Laser Scanning Point Clouds[J]. Geomatics and Information Science of Wuhan University, 2017, 42(2):250-256(刘如飞, 卢秀山, 岳国伟,等. 一种车载激光点云数据中道路自动提取方法[J]. 武汉大学学报·信息科学版, 2017, 42(2):250-256)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133