|
- 2016
可量测视频目标动态轨迹生成及GIS应用
|
Abstract:
动态目标三维重建是进一步实现目标地理信息时空分析、目标统计、目标查询、异常报警及各种空间数据挖掘应用的重要基础。利用计算机视觉技术将摄像头中目标框的二维像坐标信息实时动态还原成三维物方目标信息,采用基于物方特征域的模式分类方法,通过目标物方尺寸、目标出现的物方位置进行更准确的目标筛查,提高了目标跟踪的准确性,降低了虚警;通过地平面约束实现单目目标立体定位,增加了立体定位的场景覆盖范围;进而把以帧为单位的视频数据解析成为以目标轨迹为单位的空间三维地理对象信息,并将生成的时空轨迹图层集成到地理信息系统,实现了基于地理信息空间分布的视频时空数据管理
[1] | Blanco J L, Gonzalez J, Fernandez-Madrigal J A. An Optimal Filtering Algorithm for Non-parametric Observation Models in Robot Localization[C]. IEEE International Conference on Robotics and Automation, California, 2008 |
[2] | Papadourakis V, Argyros A. Multiple Objects Tracking in the Presence of Long-Term Occlusions[J]. <em>Computer Vision and Image Understanding</em>, 2010, 114(7):835-846 |
[3] | Canton-Ferrer C, Casas J R, Pardas M. Human Motion Capture Using Scalable Body Models[J]. <em>Computer Vision and Image Understanding</em>, 2011, 115(10):1363-1374 |
[4] | Comaniciu D, Ramesh V, Meer P. Real-Time Tracking of Non-rigid Objects Using Mean Shift[C]. IEEE Conference on Computer Vision and Pattern Recognition, South Carolina, 2000 |
[5] | Comaniciu D, Ramesh V, Meer P. Kernel-based Object Tracking[J]. <em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>, 2003, 25(5):564-577 |
[6] | Doucet A, De Freitas N, Murphy K, et al. Rao-Blackwellised Particle Filtering for Dynamic Bayesian Networks[C]. The Sixteenth Conference on Uncertainty in Artificial Intelligence, San Francisco, CA, 2000 |
[7] | Kalal Z, Mikolajczyk K, Matas J. Tracking-Learning-Detection[J]. <em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>, 2012, 34(7):1409-1422 |
[8] | Robert T C. Mean-Shift Blob Tracking Through Scale Space[C]. IEEE Conference on Computer Vision and Pattern Recognition, Wisconsin, 2003 |
[9] | Hartley R. Multiple View Geometry in Computer Vision[M]. New York:Cambridge University Press, 2003 |
[10] | Li Deren, Wang Shuliang, Li Deyi. Spatial Data Mining Theories and Applications[M]. Beijing:Science Press, 2006(李德仁,王树良,李德毅.空间数据挖掘理论与应用[M].北京:科学出版社,2006) |
[11] | Kong Yunfeng. Design of Geo-Video Data Model and Implementation of Web-based Video-GIS[J]. <em>Geomatics and Information Science of Wuhan University</em>, 2010, 35(2):133-137(孔云峰.地理视频数据模型设计及网络视频GIS实现[J]. 武汉大学学报·信息科学版,2010,35(2):133-137 |
[12] | Broida T J, Chellappa R. Estimation of Object Motion Parameters from Noisy Images[J]. <em>IEEE Transactions on Pattern Analysis and Machine Intelligence</em>, 1986, 8(1):90-99 |
[13] | Weng S K, Kuo C M, Tu S K. Video Object Tracking Using Adaptive Kalman Filter[J]. <em>Journal of Visual Communication and Image Representation</em>, 2006, 17(6):1190-1208 |
[14] | Fan X, Mittal S, Prasad T, et al. Pedestrian Detection and Tracking Using Deformable Part Models and Kalman Filtering[J]. <em>Journal of Computer-Mediated Communication</em>, 2013, 10(7):960-966 |
[15] | Jie Liu, Wilson Wang, Fai Ma. A Regularized Auxiliary Particle Filtering Approach for System State Estimation and Battery Life Prediction[J]. <em>Smart Materials and Structures</em>, 2011, 20(7):1-9 |
[16] | Wei He, Yamashita T, Hongtao Lu, et al. SURF Tracking[C]. Computer Vision, IEEE Conference on, Kyoto, Japan, 2009 |
[17] | Tong R Q, Huang Y Q, Tian R J. SURF Algorithm and Its Detection Effect on Object Tracking[J]. <em>Journal of Southwest University of Science and Technology, </em>2011, 26(3):63-67 |
[18] | Pal S K, Ghorai S. Moving Object Tracking System in Video with Kalman Filter[J]. <em>International Journal of Engineering Research and Technology</em>, 2013, 2(6):193-201 |
[19] | Arulampalam M S, Maskell S, Gordon N, et al. A Tutorial on Particle Filters for Online Non-linear/Non-Gaussian Bayesian Tracking[J]. <em>IEEE Transactions on Signal Processing</em>,2002, 50(2):174-188 |
[20] | Blanco J L, Gonzalez J, Fernandez-Madrigal J A. Optimal Filtering for Non-parametric Observation Models:Applications to Localization and SLAM[J]. <em>The International Journal of Robotics Research</em>, 2010, 29(14):1726-1742 |
[21] | Zivkovic Z, Krose B. An Em-Like Algorithm for Color-Histogram-based Object Tracking[C]. IEEE Conference on Computer Vision and Pattern Recognition, Washingtom, DC, 2004 |