全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

语义尺度影响的相离区域合并与拓扑关系计算
Disjoint Region Merging and Topological Relation Computing Induced by Semantic Scale

DOI: 10.13203/j.whugis20170009

Keywords: 语义尺度,拓扑关系,9交模型,区域对象,区域合并,
semantic scale
,topological relation,9-intersection model,region object,region merging

Full-Text   Cite this paper   Add to My Lib

Abstract:

拓扑关系随着语义尺度的变化需要重新推理或者计算。当粗略语义尺度下的区域对象由详细尺度下的有限个区域合并而成时,区域对象间的拓扑关系可采用已有的组合推理方法得到,然而这些方法只适用于简单对象并存在多解性。针对此问题,提出了基于9交模型的拓扑关系多尺度计算方法,分别针对相离区域合并和相邻区域合并定义了9交矩阵操作算子,可利用详细语义尺度的拓扑关系直接计算出合并区域间的9交矩阵。利用9交矩阵操作算子得到的计算结果值域为复杂区域对象间所有可能的拓扑关系,且不存在多解性,通过消除歧义性还可扩展9交矩阵操作算子,适用于多个相离简单区域组合的复杂区域

References

[1]  Goodchild M F. Metrics of Scale in Remote Sensing and GIS[J]. International Journal of Applied Earth Observation and Geoinformation, 2001, 3(2):114-120
[2]  Egenhofer M J, Franzosa R D. Point-set Topological Spatial Relations[J]. International Journal of Geographical Information Systems, 1991, 5(2):161-174
[3]  Egenhofer M J, Herring J R. Categorizing Binary Topological Relations Between Regions, Lines, and Points in Geographic Databases[R]. Department of Surveying Engineering, University of Maine, Orono, 1990
[4]  Herring J R. OpenGIS Implementation Specification for Geographic Information-Simple Feature Access-Part 2:SQL Option[EB/OL].http://www.opengeospatial.org/standards/sfs/, 2010
[5]  Li S J. A Complete Classification of Topological Relations Using the 9-Intersection Method[J]. International Journal of Geographical Information Science, 2006, 20(6):589-610
[6]  Li Zhilin. A Theoretical Discussion on the Scale Issue in Geospatial Data Handling[J]. Geomatics World, 2005, 3(2):1-5(李志林. 地理空间数据处理的尺度理论[J]. 地理信息世界, 2005, 3(2):1-5)
[7]  Li Lin, Li Deren. Non-atomic Feature and Scale Effect of Two Dimensional Spatial Objects in GIS[J]. Acta Geodaetica et Cartographica Sinica, 1994, 23(4):315-321(李霖, 李德仁. GIS中二维空间目标的非原子性和尺度性[J]. 测绘学报, 1994, 23(4):315-321)
[8]  Liu Kai, Wu Hehai, Hu Jie, et al. Three-Tiered Concepts of Scale of Geographical Information and Its Transformation[J]. Geomatics and Information Science of Wuhan University, 2008, 33(11):1178-1181(刘凯, 毋河海, 胡洁, 等. 地理信息尺度的三重概念及其变换[J]. 武汉大学学报·信息科学版,2008,33(11):1178-1181)
[9]  Li Lin, Ying Shen. Fundamental Problem on Spatial Scale[J]. Geomatics and Information Science of Wuhan University, 2005, 30(3):119-123(李霖, 应申. 空间尺度基础性问题研究[J]. 武汉大学学报·信息科学版, 2005, 30(3):119-123)
[10]  Wu Fan, Li Lin. Spatial Data Multi-scale Expression Model and Its Visualization[M]. Beijing:Science Press, 2005(吴凡, 李霖. 空间数据多尺度表达模型及其可视化[M]. 北京:科学出版社, 2005)
[11]  Du Shihong. Theory and Practice of Multi-scale Spatial Relations[M]. Beijing:Science Press, 2014(杜世宏. 多尺度空间关系理论与实践[M]. 北京:科学出版社, 2014)
[12]  Tryfona N, Egenhofer M J. Consistency Among Parts and Aggregates:A Computational Model[J]. Transactions in GIS,1996,1(3):189-206
[13]  Nguyen V H, Parent C, Spaccapietra S. Complex Regions in Topological Queries[C]. The International Conference on Spatial Information Theory:COSIT97, Pennsylvania, USA, 1997
[14]  Du S H, Wang Q, Guo L. Modeling the Scale Dependences of Topological Relations Between Lines and Regions Induced by Reduction of Attributes[J]. International Journal of Geographical Information Science, 2010, 24(11):1649-1686
[15]  Du S, Guo L, Wang Q. A Scale-Explicit Model for Checking Directional Consistency in Multi-resolution Spatial Data[J]. International Journal of Geographical Information Science, 2010, 24(3):465-485
[16]  Du S H, Feng C C, Wang Q. Multi-scale Qualitative Location:A Direction-Based Model[J]. Computers, Environment and Urban Systems, 2013, 41(4):151-166
[17]  Du S H, Feng C C, Guo L. Integrative Representation and Inference of Qualitative Locations About Points, Lines, and Polygons[J]. International Journal of Geographical Information Science, 2015, 29(6):980-1006
[18]  Zhou X G, Chen J, Zhan F B, et al. A Euler Number-Based Topological Computation Model for Land Parcel Database Updating[J]. International Journal of Geographical Information Science, 2013, 27(10):1983-2005
[19]  Egenhofer M J. Deriving the Composition of Binary Topological Relations[J]. Journal of Visual Languages and Computing, 1994, 5(2):133-149
[20]  Schneider M, Behr T. Topological Relationships Between Complex Spatial Objects[J]. ACM Transactions on Database Systems, 2006, 31(1):39-81
[21]  Clementini E, Felice P D. A Spatial Model for Complex Objects with a Broad Boundary Supporting Queries on Uncertain Data[J]. Data & Knowledge Engineering, 2001, 37(3):285-305
[22]  Worboys M F, Bofakos P. A Canonical Model for a Class of Areal Spatial Objects[C]. The 3rd International Symposium on Advances in Spatial Databa-ses, Singapore, 1993
[23]  Wang Zhangang, Du Qunle, Wang Xianghong. Dividing and Computing Topological Relations Between Complex Regions[J]. Acta Geodaetica et Cartographica Sinica, 2017, 46(8):1047-1057(王占刚, 杜群乐, 王想红. 复杂区域对象拓扑关系分解与计算[J]. 测绘学报, 2017, 46(8):1047-1057)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133