全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

自适应渐消卡尔曼滤波及其在SINS初始对准中的应用
Adaptive Fading Kalman Filter and Its Application in SINS Initial Alignment

DOI: 10.13203/j.whugis20160548

Keywords: 卡尔曼滤波,惯性导航系统,初始对准,自适应渐消滤波,滤波状态检验,
Kalman filter
,inertial navigation system,initial alignment,adaptive fading filter,filter state test

Full-Text   Cite this paper   Add to My Lib

Abstract:

卡尔曼滤波常常被用于惯性导航系统初始对准算法,其使用前提是对系统状态进行建模,从而得到比较准确的系统噪声和观测噪声统计特性。在模型失配和观测噪声干扰的情况下,常规卡尔曼滤波会出现精度下降甚至发散,从而影响初始对准精度。针对这一问题,提出了一种新型渐消卡尔曼滤波算法,引入了多重渐消因子对预测误差协方差阵进行调整,设计了基于新息向量统计特性的滤波状态χ2检验条件,使渐消因子的引入时机更加合理,算法的自适应性得到增强。将改进的卡尔曼滤波算法应用到惯性导航系统的初始对准问题中,仿真试验和实测数据试验结果表明,与常规渐消因子滤波算法相比,新算法可以有效提高滤波精度及鲁棒性

References

[1]  Xu Dingjie, He Rui, Shen Feng, et al. Adaptive Fading Kalman Filter Based on Innovation Covariance[J]. Systems Engineering and Electronics, 2011, 33(12):2696-2699(徐定杰, 贺瑞, 沈锋, 等. 基于新息协方差的自适应渐消卡尔曼滤波器[J]. 系统工程与电子技术, 2011, 33(12):2696-2699)
[2]  Xu Xiaosu, Zhou Feng, Zhang Tao, et al. Initial Alignment Algorithm for SINS Based on Quaternion Adaptive Kalman Filter[J].Journal of Chinese Inertial Technology, 2016, 24(4):454-459(徐晓苏, 周峰, 张涛, 等. 基于四元数自适应卡尔曼滤波的快速对准算法[J]. 中国惯性技术学报, 2016, 24(4):454-459)
[3]  Fang J C, Yang S.Study on Innovation Adaptive EKF for In-flight Alignment of Airborne POS[J]. IEEE Transactions on Instrumentation & Measu-rement, 2011,60(4):1378-1388
[4]  Geng Y R, Wang J L. Adaptive Estimaion of Multiple Fading Factors in Kalman Filter for Navigation Applications[J]. GPS Solutions, 2008, 12(4):273-279
[5]  Xia Qijun, Sun Youxian, Zhou Chunhui. An Optimal Adaptive Algorithm for Fading Kalman Filter and Its Application[J].Acta Automatica Sinica, 1990, 16(3):210-216(夏启军, 孙优贤, 周春晖. 渐消卡尔曼滤波器的最佳自适应算法及其应用[J]. 自动化学报, 1990, 16(3):210-216)
[6]  Najjaran H, Goldenberg A. Real-Time Motion Planning of an Automous Mobile Manipulator Using a Fuzzy Adaptive Kalman Filter[J]. Robotics and Autonomous Systems, 2007, 55(2):96-106
[7]  Gao W X, Miao L J, Ni M L. Multiple Fading Factors Kalman Filter for SINS Static Alignment Application[J]. Chinese Journal of Aeronautics, 2011, 24(4):476-483
[8]  Chang G B. Robust Kalman Filtering Based on Mahalanobis Distance as Outlier Judging Criterion[J]. Journal of Geodesy, 2014, 88(4):391-401
[9]  Chang G B, Liu M. An Adaptive Fading Kalman Filter Based on Mahalanobis Distance[J].Institution of Mechanical Engineers, Part G:Journal of Aerospace Engineering, 2015, 229(6):1114-1123
[10]  Tarn T J, Zaborszky J. A Practical, Nondiverging Filter[J]. AIAA Journal, 1970, 8(6):1127-1133
[11]  Xue Haijian, Guo Xiaosong, Zhou Zhaofa. SINS Initial Alignment Method Based on Adaptive Multiple Fading Factors Kalman Filter[J]. Systems Engineering and Electronics, 2017, 39(3):620-626(薛海建, 郭晓松, 周召发. 基于自适应多重渐消因子卡尔曼滤波的SINS初始对准方法[J]. 系统工程与电子技术, 2017, 39(3):620-626)
[12]  Chang G B, Liu M. M-Estimator-Based Robust Kalman Filter for Systems with Process Modeling Errors and Rank Deficient Measurement Models[J]. Nonlinear Dynamics, 2015, 80(3):1431-1449
[13]  Xia Q J, Rao M, Ying Y Q, et al. Adaptive Fading Kalman Filter with an Application[J]. Automatica, 1994, 30(8):1333-1338
[14]  Ren D. Failure Dection of Dynamical Systems with the State Chi-square Test[J].Journal of Guidance Control and Dynamics, 1994, 17(2):271-277
[15]  Zhang Zhongzhan, Xu Xingzhong. Mathematical Statistics[M]. Beijing:China Machine Press, 2008(张忠占, 徐兴忠. 应用数理统计[M]. 北京:机械工业出版社, 2008)
[16]  Yang Yuanxi, Gao Weiguang. Comparison of Two Fading Filters and Adaptively Robust Filter[J]. Geomatics and Information Science of Wuhan University, 2006, 31(11):980-982(杨元喜, 高为广. 两种渐消滤波与自适应抗差滤波的综合比较分析[J]. 武汉大学学报·信息科学版, 2006,31(11):980-982)
[17]  Gao Wei, Li Jingchun, Ben Yueyang, et al. Adaptive Kalman Filter Based on Multiple Fading Factors[J].Systems Engineering and Electronics, 2014, 36(7):1405-1409(高伟, 李敬春, 奔粤阳, 等. 基于多重渐消因子的自适应卡尔曼滤波器[J]. 系统工程与电子技术, 2014, 36(7):1405-1409)
[18]  Titterton D H, Weston J L. Strapdown Inertial Navigation Technology[M]. 2nd ed. London:The Institution of Engineering and Technology, 2004
[19]  Chang L B, Hu B Q, Li A, et al. Strapdown Inertial Navigation System Alignment Based on Marginalised Unscented Kalman Filter[J]. IET Science Measurement & Technology, 2013, 7(2):128-138
[20]  Li W L, Wang J L, Lu L Q, et al. A Novel Scheme for DVL-Aided SINS In-motion Alignment Using UKF Techniques[J]. Sensors, 2013,13(1):1046-1063
[21]  Su Wanxin. Application of Adaptive UKF Filter Technique in Initial Alignment of SINS[J]. Journal of Chinese Inertial Technology, 2011,19(5):532-536(苏宛新. 自适应UKF滤波在SINS初始对准中的应用[J]. 中国惯性技术学报, 2011,19(5):532-536)
[22]  Zhang Jinhuai. Some Thoughts on Adaptive Filtering Technique[J]. Journal of National University of Defense Technology, 1994,16(3):68-79(张金槐.关于自适应滤波技术的一些思考[J].国防科技大学学报,1994,16(3):68-79)
[23]  Qian Huaming, Ge Lei, Peng Yu. Multiple Fading Kalman Filter and Its Application in SINS Initial Alignment[J]. Journal of Chinese Inertial Technology, 2012,20(3):287-291(钱华明, 葛磊, 彭宇. 多渐消因子卡尔曼滤波及其在SINS初始对准中的应用[J]. 中国惯性技术学报, 2012, 20(3):287-291)

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133