全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

不等式约束加权整体最小二乘的凝聚函数法
An Aggregate Function Method for Weighted Total Least Squares with Inequality Constraints

DOI: 10.13203/j.whugis20160507

Keywords: 不等式约束,加权整体最小二乘,凝聚约束,非线性规划,精度评定,
inequality constraints
,weighted total least squares,aggregate constraints,nonlinear pro-gramming,accuracy assessment

Full-Text   Cite this paper   Add to My Lib

Abstract:

误差向量的方差-协方差阵是一般对称正定矩阵下的附不等式约束加权整体最小二乘平差模型,研究了其参数估计和精度评定问题。首先,将残差平方和极小化函数在整体最小二乘准则下转化为只包含模型参数的目标函数,同时将所有的不等式约束表示成一个等价的凝聚约束函数,并运用乘子罚函数策略将不等式约束加权整体最小二乘平差问题转化为相应的无约束最优化问题,并用BFGS方法求解。然后,将误差方程和约束函数线性展开,推导了最优解和观测量间的近似线性函数关系,运用方差-协方差传播律得到了最优解的近似方差。最后,用数值实例验证了方法的有效性和可行性

References

[1]  Zeng Wenxian, Fang Xing, Liu Jingnan, et al. Weighted Total Least Squares Algorithm with Inequality Constraints[J]. Acta Geodaetica et Cartographica Sinica, 2014, 43(10):1013-1018(曾文宪,方兴,刘经南,等. 附有不等式约束的加权整体最小二乘算法[J]. 测绘学报, 2014, 43(10):1013-1018)
[2]  Xu P L, Liu J N, Shi C. Total Least Squares in Partial Errors-in-Variables Models:Algorithm and Statistical Analysis[J]. Journal of Geodesy, 2012, 86(8):661-675
[3]  Shen Y Z, Li B F, Chen Y. An Iterative Solution of Weighted Total Least-Squares Adjustment[J]. Journal of Geodesy, 2011, 85(4):229-238
[4]  de Moor B. Total Linear Least Squares with Inequality Constraints[R]. ESAT-SISTA Report 1990-02, Department of Electrical Engineering, Katholieke Universiteit Leuven, Belgium, 1990
[5]  Dai Wujiao, Zhu Jianjun. Single Epoch Ambiguity Resolution in Structure Monitoring Using GPS[J]. Geomatics and Information Science of Wuhan University, 2007, 32(3):234-237(戴吾蛟, 朱建军. GPS建筑物震动变形监测中的单历元算法[J]. 武汉大学学报·信息科学版, 2007, 32(3):234-237)
[6]  Rao C R, Toutenburg H. Linear Model:Least Squares and Alternatives[M]. Heidelberg:Springer, 2005
[7]  Lu G, Krakiwsky E J, Lachapelle G. Application of Inequality Constraint Least Squares to GPS Navigation Under Selective Availability[J]. Manuscripta Geodaetica, 1993, 18:124-130
[8]  Zeng W X, Liu J N, Yao Y B. On Partial Errors-in-Variables Models with Inequality Constraints of Parameters and Variables[J]. Journal of Geodesy, 2015, 89(2):111-119
[9]  Wang Leyang, Xu Caijun, Lu Tieding. Ridge Estimation Method in Ill-posed Weighted Total Least Squares Adjustment[J]. Geomatics and Information Science of Wuhan University, 2010, 35(11):1346-1350(王乐洋,许才军,鲁铁定.病态加权总体最小二乘平差的岭估计解法[J]. 武汉大学学报·信息科学版,2010,35(11):1346-1350)
[10]  Liew C K. Inequality Constrained Least-Squares Estimation[J]. Journal of the American Statistical Association, 1976, 71(355):746-751
[11]  Zhang S L, Tong X H, Zhang K. A Solution to EIV Model with Inequality Constraints and Its Geodetic Applications[J]. Journal of Geodesy, 2013, 87(1):23-28
[12]  Peng J H, Zhang H P, Shong S L, et al. An Aggregate Constraint Method for Inequality-Constrained Least Squares Problems[J]. Journal of Geodesy, 2006, 79(12):705-713
[13]  Mahboub V, Sharifi M A. On Weighted Total Least-Squares with Linear and Quadratic Constraints[J]. Journal of Geodesy, 2013, 87:279-286
[14]  Fang X. On Non-combinatorial Weighted Total Least Squares with Inequality Constraints[J]. Journal of Geodesy, 2014, 88(8):805-816
[15]  Zhu J J, Santerre R, Chang X W. A Bayesian Method for Linear Inequality Constrained Adjustment and Its Application to GPS Positioning[J]. Journal of Geodesy, 2005, 78(9):528-534
[16]  Roese-Koerner L, Devaraju B, Sneeuw N, et al. A Stochastic Framework for Inequality Constrained Estimation[J]. Journal of Geodesy, 2012, 86(11):1005-1018
[17]  Schaffrin B, Felus Y A. An Algorithmic Approach to the Total Least-Squares Problem with Linear and Quadratic Constraints[J]. Studia Geophysica Geodaetica, 2009,53(1):1-16
[18]  Fang X. Weighted Total Least Squares:Necessary and Sufficient Conditions, Fixed and Random Parameters[J]. Journal of Geodesy, 2013, 87(8):733-749

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133