|
- 2017
基于几何特征与流形距离的锂电池健康评估
|
Abstract:
摘要: 作为实现电池健康管理的有效途径,精准的荷电状态估计和健康衰退状况评估能够很好的解决锂离子电池在实际使用过程中面临的可靠使用和安全管理问题。 考虑到现有电池健康衰退状况评估方法将监测数据放在欧氏空间进行分析,因而扭曲了数据的本质结构导致工况适用性差,利用流形学习挖掘隐藏在电池监测数据中的健康信息,并在流形空间中对锂离子电池健康状态进行度量。进行实例分析并对该方法的有效性进行了验证。
Abstract: The estimations of state of charge and state of health evolved in li-ion battery health management systems can help managing the reliability and safety of the fielded battery. Considering that many data-driven state of health estimations habituated to model the battery monitoring information in Euclid space with the purpose of assessing battery health status, which often brings about a poor adaptability to operation conditions, manifold learning was used to mine the health information hidden in the battery monitoring data and manifold distance was utilized to measure the battery health condition. At last, a case analysis was conducted to validate the proposed state of health estimation method for the li-ion battery
[1] | ARULAMPALAM M S, MASKELL S, GORDON N, et al. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking[J]. IEEE Transactions on Signal Processing, 2002, 50(2): 174-188. |
[2] | TENENBAUM J B, DE SILVA V, LANGFORD J C. A global geometric framework for nonlinear dimensionality reduction[J]. Science, 2000, 290(5500): 2319-2323. |
[3] | SHIM J, KOSTECKI R, RICHARDSON T. Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature[J]. Journal of Power Sources, 2002, 112(1):222-230. |
[4] | 王靖. 流形学习的理论与方法研究[D]. 杭州: 浙江大学, 2006. WANG Jing. Research on manifold learning:theories and approaches[D]. Hangzhou: Zhejiang University, 2006. |
[5] | 曹丽. 基于流形的特征抽取及人脸识别研究[D].扬州:扬州大学, 2009. CAO Li. Manifold-based feature extraction and face recognition analysis[D].Yangzhou:Yangzhou University, 2009. |
[6] | GONG M, BO L, WANG L, et al. Image texture classification using a manifold-distance-based evolutionary clustering method[J]. Optical Engineering, 2008, 47(7): 77201-77210. |
[7] | ZHANG X, ROSSP, KOSTECKI R. Diagnostic characterization of high power lithium-ion batteries for use in hybride lectric vehicles[J].Journal of the Electrochemical Society, 2001, 148(5):A463-A470. |
[8] | LI Y, OMAR N, NANINI-MAURY E, et al. Performance and reliability assessment of NMC lithium ion batteries for stationary application[C] //Processdings of IEEE on Vehicle Power and Propulsion 2016. Hangzhou, China:VPPC, 2016:137. |
[9] | BELKIN M, NIYOGI P. Laplacian eigenmaps for dimensionality reduction and data representation[J]. Neural computation, 2003, 15(6): 1373-1396. |
[10] | ROWEIS S T, SAUL L K. Nonlinear dimensionality reduction by locally linear embedding[J]. Science, 2000, 290(5500): 2323-2326. |
[11] | 李小丽, 薛清福. 几种流形学习算法的比较研究[J]. 电脑与信息技术, 2009,17(3): 14-18. LI Xiaoli, XUE Qingfu. A comparative study of some manifold learning algorithms[J]. Computer and Information Technology, 2009, 17(3):14-18. |
[12] | HE X, NIYOGI P. Locality preserving projections[C] //Proceedings of Neural Information Processing Systems on Computer Science. Carson City, USA: NIPS, 2003:153. |
[13] | AN D, CHOI J H, KIM N H. Prognostics 101: a tutorial for particle filter-based prognostics algorithm using Matlab[J]. Reliability Engineering & System Safety, 2013, 115: 161-169. |