全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于改进的典型相关分析的故障检测方法
A fault detection method based on modified canonical correlation analysis

DOI: 10.6040/j.issn.1672-3961.0.2017.171

Keywords: 故障检测,典型相关分析,数据驱动,Tennessee Eastman 过程,
data-driven
,canonical correlation analysis,Tennessee Eastman process,fault detection

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 为提高基于典型相关分析的故障检测方法使用效率,对原有的残差产生方式进行改进。通过分析残差信号统计特性,重新选取残差产生方式,使得改进的残差生成方式不依赖于主元个数的选取,从而避免因主元个数选取所带来的故障检测性能影响。通过Tennessee Eastman benchmark process仿真实例,对改进方法的可行性和有效性进行验证。选取4个典型故障的运行数据,分别用所提方法进行故障检测,改进的典型相关分析方法能够有效的检测故障的发生。另外,通过对两个统计量的故障检测率的对比可以看出,两个统计量对于发生在不同子空间的故障敏感度各异,对于不同故障的检测能力不同。
Abstract: In order to improve the effectiveness of the fault detection(FD)method based on standard canonical correlation analysis(CCA), the original residual generation was modified. By analyzing the statistical characteristics of the residual signal and changing the residual generation mode, the improved residual generation method did not depend on the selection of the number of principal components, so that the fault detection performance would be free of such a selection. The proposed method was further applied to the Tennessee Eastman benchmark process, in which four typical faults were simulated. The achieved results showed that the proposed method could successfully detect the faults. Due to the different fault sensitivity of the two test statistics, it could be found that the fault detectability of the two test statistics were different

References

[1]  GERTLER J. Fault detection and diagnosis in engineering systems[M]. New York: Marcel Dekker, 1998.
[2]  ZHANG Kai, HAO Haiyang, CHEN Zhiwen, et al. A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches[J]. Journal of Process Control, 2015, 33:112-126.
[3]  YIN Shen, WANG Guang, GAO Huijun. Data-driven process monitoring based on modified orthogonal projections to latent structures[J]. IEEE Transactions on Control System Technology, 2016, 24(4):1480-1487.
[4]  THORNIHILL N F, HORCH A. Advances and new directions in plant-wide disturbance detection and diagnosis [J]. Control Engineering Practice, 2007, 15(10):1196-1206.
[5]  CHEN Zhiwen, ZHANG Kai, DING S X, et al. Improved canonical correlation analysis-based fault detection methods for industrial processes[J]. Journal of Process Control, 2016, 41:26-34.
[6]  DING S X. Model-based fault diagnosis techniques-design schemes, algorithms and tools[M]. 2<sup>nd</sup> ed. London: Springer-Verlag, 2013,
[7]  GE Zhiqiang, SONG Zhihuan, GAO Furong. Review of recent research on data-based process monitoring[J]. Industrial Engineering Chemical Research, 2013, 52(10):3543-3562.
[8]  MAJID N A, TAYLOR M P, CHEN J J, et al. Aluminium process fault detection by multiway principal component analysis[J]. Control Engineering Practice, 2011, 19(4):367-379.
[9]  ZHANG Yingwei, ZHOU Hong, QIN S J, et al. Decentralized fault diagnosis of large-scale processes using multiblock kernel partial least squares[J]. IEEE Transactions on Industrial Informatics, 2010, 6(1):3-10.
[10]  DING S X. Data-driven design of fault diagnosis and fault-tolerant control systems[M]. London: Springer-Verlag, 2014.
[11]  彭开香, 马亮, 张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(2): 1-17. PENG Kaixiang, MA Liang, ZHANG Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes [J]. Acta Automatica Sinica, 2017, 43(3): 349-365.
[12]  ZHOU Donghua, LI Gang, QIN S J. Total projection to latent structure for process monitoring[J]. AIChE J, 2010,56(1):168-178.
[13]  MACGREGOR J F, KOURTI T. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3):403-414.
[14]  KANO M, HASEBE S, HASHIMOTO I, et al. A new multivariate statistical process monitoring method using principal component analysis [J]. Computer Chemometrics Engineering, 2001, 25(7-8):1103-1113.
[15]  YIN Shen, DING S X, HAGHANI A. A comparison study of basic data-driven fault diagnosis and process monitoring methods on the benchmark Tennessee Eastman process[J]. Journal of Process Control, 2012, 22:1567-1581.
[16]  周东华,叶银忠. 现代故障诊断与容错控制[M].北京:清华大学出版社,2000.
[17]  QIN S J. Survey on data-driven industrial process monitoring and diagnosis[J]. Annual Reviews in Control, 2012, 36(2):220-234.
[18]  YIN Shen, LIU Lei, HOU Jian. A multivariate statistical combination forecasting method for product quality evaluation[J]. Information Science, 2016, 355-356:229-236.
[19]  CHEN Zhiwen, DING S X, ZHANG Kai, et al. Canonical correlation analysis-based fault detection methods with application to alumina evaporation process [J]. Control Engineering Practice, 2016, 46:51-58.
[20]  ANDERSON T W. An introduction to multivariate statistical analysis[M]. Second edition. New York: John Wiley and Sons, LTD, 1984.
[21]  DOWNS J, FOGEL E. A plant-wide industrial process control problem[J]. Computer Chemistry Engineering, 1993, 17(3):245-255.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133