全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于单调约束的径向基函数神经网络模型
An radial basis function neural network model based on monotonic constraints

DOI: 10.6040/j.issn.1672-3961.0.2017.423

Keywords: 径向基函数神经网络,数据分类,Tikhonov 正则化,单调约束,分类性能,
monotonic constraint
,data classification,Tikhonov regularization,radial basis function neural network,classification performance

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 径向基函数(radial basis function, RBF)神经网络是一种高效的前馈式神经网络。它结构简单,具有良好的泛化能力,已经被广泛的应用于数据分类中。但是对于一些特殊的分类场景,如单调数据场景,神经网络还未充分发挥其潜能。针对此,提出单调径向基函数神经网络(monotonic radial basis function neural network, MC-RBF)。MC-RBF引入Tikhonov 正则化方法确保优化问题解的唯一性与有界性。试验结果表明,在处理具有单调性的数据集时,MC-RBF比原始的RBF神经网络具有更好的分类性能。
Abstract: Radial basis function(RBF)neural network was a type of efficient feedforward neural network, which had simple structure and good generalization ability. It had been widely used in data classification. However, for some special classification scenarios, such as the scenarios of dealing with the monotonic data, RBF neural network could not fully realize its potential. For this challenge, monotonic radial basis function neural network(MC-RBF)was proposed. The model added a prior knowledge about monotonicity which was expressed in terms of inequality based on partial order of training data. The Tikhonov regularization was introduced to MC-RBF to ensure the uniqueness and boundedness of the solution of the optimization problem. The experimental results showed that MC-RBF had better classification performance than the classical RBF neural network when dealing with monotonic datasets

References

[1]  那文波,何宁,刘巍,等. 基于遗传算法优化的RBF神经网络的压力传感器故障诊断[J]. 煤矿机械, 2016(7): 180-183. NA Wenbo, HE Ning, LIU Wei, et al. Fault diagnosis of pressure sensor based on RBF neural network optimized by genetic algorithm[J]. Coal Mine Machinery, 2016(7):180-183.
[2]  BEN-David A, STERLING L, PAO Y H. Learning and classification of monotonic ordinal concepts[J]. Computational Intelligence, 1989, 5(1): 45-49.
[3]  ABU-MOSTAFA Y S. Learning from hints[J]. Complexity, 1994, 10: 165-178.
[4]  LI Y, QIANG S, ZHUANG X, et al. Robust and adaptive backstepping control for nonlinear systems using RBF neural networks[J]. IEEE Transactions on Neural Networks, 2004, 15(3): 693-701.
[5]  田俊峰, 张晶, 毕志明. 基于改进的 RBF神经网络的入侵检测研究[J]. 计算机工程与应用, 2008, 44(31): 135-138. TIAN Junfeng, ZHANG Jing, BI Zhiming. Research of intrusion detection based on improved RBF neural network[J]. Computer Engineering and Applications, 2008, 44(31): 135-138.
[6]  唐启义, 冯明光. DPS数据处理系统: 实验设计、统计分析及模型优化[M]. 北京: 科学出版社, 2006. TANG Qiyi, FENG Mingguang. DPS data processing system: experimental design: Statistical Analysis and Modeling[M]. Beijing: Science Press, 2006.
[7]  LIN C L, WANG J F, CHEN C Y, et al. Improving the generalization performance of RBF neural networks using a linear regression technique[J]. Expert Systems with Applications, 2009, 36(10): 12049-12053.
[8]  BURGES C J C. A tutorial on support vector machines for pattern recognition[J]. Data Mining & Knowledge Discovery, 1998, 2(2):121-167.
[9]  ABU-MOSTAFA Y S. Hints[J]. Neural Computation, 1995, 7(4):639-671.
[10]  NIROS A D, TSEKOURAS G E. A novel training algorithm for RBF neural network using a hybrid fuzzy clustering approach[J]. Fuzzy Sets and Systems, 2012, 193: 62-84.
[11]  VAUHKONEN M, VADASZ D, KARJALAINEN P A, et al. Tikhonov regularization and prior information in electrical impedance tomography[J]. IEEE Transactions on Medical Imaging, 1998, 17(2):285-293.
[12]  TIKHONOV A N, ARSENIN V Y. Solutions of Ill-posed problems[J]. Mathematics of Computation, 1977, 32(144):491-491.
[13]  WISMER D, CHATTERGY R. Introduction to nonlinear optimization[M]. Amsterdam, Netherland: North Holland, 1978:227-313.
[14]  WANG J J, ZHANG C F, JING Y Y. Self-adaptive RBF neural network PID control in exhaust temperature of micro gas turbine[C] //International Conference on Machine Learning and Cybernetics. Kunming: IEEE, 2008:2131-2136.
[15]  YUN Z, QUAN Z, CAIXIN S, et al. RBF neural network and ANFIS-based short-term load forecasting approach in real-time price environment[J]. IEEE Transactions on Power Systems, 2008, 23(3): 853-858.
[16]  罗小波,王云安,肖春宝,等. RBF神经网络在遥感影像分类中的应用研究[J]. 遥感技术与应用, 2004, 16(2): 119-123. LUO Xiaobo, WANG Yunan, XIAO Chunbao, et al. The application of RBF neural network in remote sensing image classification[J]. Remote Sensing Technology and Application, 2004, 16(2): 119-123.
[17]  BEN-DAVID A. Monotonicity maintenance in information-theoretic machine learning algorithms[J]. Machine Learning, 1995, 19(1): 29-43.
[18]  LI S T, CHEN C C. A regularized monotonic fuzzy support vector machine model for data mining with prior knowledge[J]. IEEE Transactions on Fuzzy Systems, 2015, 23(5):1713-1727.
[19]  MAES C M. A regularized active-set method for sparse convex quadratic programming[D]. Palo Alto, USA: Stanford University, 2010.
[20]  NIROS A D, TSEKOURAS G E, TSOLAKIS D, et al. Hierarchical fuzzy clustering in conjunction with particle swarm optimization to efficiently design RBF neural networks[J]. Journal of Intelligent & Robotic Systems, 2015, 78(1): 105-125.
[21]  黄涛. 基于RBF神经网络的非线性回归模型[EB/OL].(2011-3-29)[2017-3-18]. http://www.paper.edu.cn. HUANG Tao. An nonlinear regression model based on RBF neural network [EB/OL].(2011-3-29)[2017-3-18]. http://www.paper.edu.cn.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133