全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

基于气象因素的PM2.5质量浓度预测模型
Prediction models of PM2.5 mass concentration based on meteorological factors

DOI: 10.6040/j.issn.1672-3961.0.2014.214

Keywords: 机器学习,BP神经网络,支持向量机,多元线性回归,PM2.5,
PM2.5
,multiple linear regression,support vector machine,machine learning,BP neural network

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 为得出拟合效果最佳的预测模型,建立了多元回归和机器学习预测模型对PM2.5质量浓度进行预测。在输入气象因素的基础上,引入污染物质量浓度基础值和周期因素两类变量作为预测输入,并对4种预测模型进行对比研究。研究结果表明:对预测输入进行改进后,多元线性回归预测模型拟合优度由0.52提高至0.64,所选取的气象参数、污染物质量浓度基础值和周期因素能较好地描述PM2.5质量浓度的日变化情况;与多元线性回归预测模型相比,BP神经网络和支持向量机两种预测模型能较好地捕捉PM2.5质量浓度与预测输入之间的非线性影响规律,整体拟合优度分别达0.69和0.74,预测准确度较高;支持向量机预测模型可作为PM2.5质量浓度预测的首选方法。
Abstract: In order to get the optimal prediction model, the prediction models of PM2.5 mass concentration based on multiple linear regression and machine learning were developed. Basic values of pollutants mass concentrations and periodical factors were introduced as predictive inputs based on meteorological factors. Then four prediction models were developed for comparison. Results showed that goodness of fit of multiple linear regression model based on improved predictive inputs was increased from 0.52 to 0.64. The selected meteorological factors, basic values of pollutants mass concentrations and periodical factors could accurately describe daily variation of PM2.5. BP neural network and support vector machine models could be trained to model the highly non-linear relationships between PM2.5 mass concentration and predictive inputs. They provided satisfactory results with goodness of fit of 0.69 and 0.74, respectively. Support vector machine model was proved to be optimal prediction model of PM2.5 mass concentration

References

[1]  姜雪, 卢文喜, 杨青春, 等. 应用支持向量机评价土壤环境质量[J]. 中国环境科学, 2014, 34(5):1229-1235. JIANG Xue, LU Wenxi, YANG Qingchun, et al. Application of support vector machine in soil environmental quality assessment[J]. China Environmental Science, 2014, 34(5):1229-1235.
[2]  于涛, 王可丽, 李芳, 等. 兰州市大气环境质量影响因素多元统计模型研究[J]. 西安建筑科技大学学报:自然科学版, 2009, 41(5):723-729. YU Tao, WANG Keli, LI Fang, et al. Study on multi-variate statistical analysis model of influencing factors on the atmospheric environmental quality in Lanzhou city[J]. Journal of Xi'an University of Archrchitecture and Technology:Natural Science Edition, 2009, 41(5):723-729.
[3]  GRIVAS G, CHALOULAKOU A. Artificial neural network models for prediction of PM<sub>10</sub> hourly concentrations, in the Greater Area of Athens, Greece[J]. Atmospheric Environment, 2006, 40(7):1216-1229.
[4]  ANGUITA D, CHIO A, PISCHIUTTA S. A support vector machine with integer parameters[J]. Neurocomputing, 2008, 72(1/3):480-489.
[5]  CORTES C, VAPNIK V. Support-Vector networks[J]. Machine Learning, 1995(20):273-297.
[6]  ANDERSON J. An introduction to neural networks[M]. London, the UK:MIT Press, 1995.
[7]  CANEVALE C, FINZI G, PISONI E, et al. Neuro-fuzzy and neural network systems for air quality control[J]. Atmospheric Environment, 2008, 7(64):1-11.
[8]  SANCHEZ A D. Advanced support vector machines and kernel methods[J]. Neurocomputing, 2003, 55(1):5-20.
[9]  刘春波, 王群芳, 潘丰. 基于蚁群优化算法的支持向量机参数选择及仿真[J]. 中南大学学报:自然科学版, 2008, 39(6):1309-1313. LIU Chunbo, WANG Qunfang, PAN Feng. Parameters selection and stimulation of support vector machines based on ant colony optimization algorithm[J]. Journal of Central South University:Science and Technology, 2008, 39(6):1309-1313.
[10]  RAKOTOMAMONJYA A, RICHE R L, GUALANDRISC D, et al. A comparison of statistical learning approaches for engine torque estimation[J]. Control Engineering Practice, 2008, 16(1):43-55.
[11]  CHALOULAKOU A, GRIVAS G, SPYRELLIS N. Neural network and multiple regression models for PM10 prediction in Athens:a comparative assessment[J]. Journal of the Air & Waste Management Association, 2003, 53(10):1183-1190.
[12]  LIU W Z, WANG W J, WANG X K, et al. Potential assessment of a neural network model with PCA/RBF approach for forecasting pollutant trends in Mong Kok urban air, Hong Kong[J]. Environment Research, 2004, 96(1):79-87.
[13]  石灵芝, 邓启红, 路婵, 等. 基于BP人工神经网络的大气颗粒物PM<sub>10</sub>质量浓度预测[J]. 中南大学学报:自然科学版, 2012, 43(5):1969-1974. SHI Lingzhi, DENG Qihong, LU Chan, et al. Prediction of PM<sub>10</sub> mass concentrations based on BP artificial neural network[J]. Journal of Central University:Science and Technology, 2012, 43(5):1969-1974.
[14]  CAI M, YIN Y, XIE M. Prediction of hourly air pollutant concentrations near urban arterials using artificial neural network approach[J]. Transportation Research:Part D, 2009, 14(1):32-41.
[15]  刘杰, 杨鹏, 吕文生, 等. 模糊时序与支持向量机建模相结合的PM<sub>2.5</sub>质量浓度预测[J]. 北京科技大学学报, 2014, 36(12):1694-1702. LIU Jie, YANG Peng, L Wensheng, et al. Prediction model of PM<sub>2.5</sub> mass concentrations based on fuzzy time series and support vector machine[J]. Journal of University of Science and Technology Beijing, 2014, 36(12):1694-1702.
[16]  HUSSEIN T, KARPPINEN A, KUKKONEN J, et al. Meteorological dependence of size-fractionated number concentrations of urban aerosol particles[J]. Atmospheric Environment, 2006, 40(8):1427-1440.
[17]  MCKENDRY I. Evaluation of artificial neural networks for fine particulate pollution(PM<sub>10</sub> and PM<sub>2.5</sub>) forecasting[J]. Journal of the Air & Waste Management Association, 2002, 52(9):1096-1101.
[18]  孟健, 付桦, 赵晓林, 等. 北京西三环路分时段车流量分析[J]. 首都师范大学学报:自然科学版, 2006, 27(2):89-98. MENG Jian, FU Hua, ZHAO Xiaolin, et al. Research progress on the mechanism of nitrogen and phosphorus in non-point source pollution[J]. Journal of Capital Normal University:Natural Science Edition, 2006, 27(2):89-98.
[19]  潘本锋, 赵熠琳, 李健军, 等. 气象因素对大气中PM<sub>2.5</sub>的去除效应[J]. 环境科技, 2012, 25(6):41-44. PAN Benfeng, ZHAO Yilin, LI Jianjun, et al. Analysis of the scavenging efficiency on PM<sub>2.5</sub> concentration of some kinds of meteorological factors[J]. Environment Science and Technology, 2012, 25(6):41-44.
[20]  CAPPARUCCIA R, DE L R, MARCHITTO E. Integrating support vector machines and neural networks[J]. Neural Networks, 2007, 20(5):590-597.
[21]  WANG Wenjian, MEN CHANGqian, LU Weizhen. Online prediction model based on support vector machine[J]. Neurocomputing, 2008, 71(4/6):550-558.
[22]  刘杰, 杨鹏, 吕文生. 北京大气颗粒物污染特征及空间分布插值分析[J]. 北京科技大学学报, 2014, 36(9):1269-1279. LIU Jie, YANG Peng, L Wensheng. Pollution characteristics of particulate matters and interpolation analysis of their spatial distribution in Beijing[J]. Journal of University of Science and Technology Beijing, 2014, 36(9):1269-1279.
[23]  ZIOMAS I C, MELAS D, ZEREFOS C S, et al. Forecasting peak pollutant levels from meteorological variables[J]. Atmospheric Environment, 1995, 29(24):3703-3711.
[24]  CHALOULAKOU A, KASSOMENOS P, SPYRELLIS N, et al. Measurements of PM<sub>10</sub> and PM<sub>2.5</sub> particle concentrations in Athens, Greece[J]. Atmospheric Environment, 2003, 37(5):649-660.
[25]  KUKKONEN J, PARTANEN L, KARPPINEN A, et al. Extensive evaluation of neural network models for the prediction of NO<sub>2</sub> and PM<sub>10</sub> concentrations, compared with a deterministic modelling system and measurement in central Helsinki[J]. Atmospheric Environment, 2003, 37(32):4539-4550.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133