|
- 2015
基于博弈论的量子蚁群算法
|
Abstract:
摘要: 针对量子蚁群算法求解组合优化问题时易陷入局部最优和收敛速度慢的问题,提出一种基于博弈论的量子蚁群算法(quantum ant colony algorithm based on the game theory, GQACA)。算法采用重复博弈模型,在重复博弈中产生一个博弈序列,使得每次博弈都能够产生最大效益,并得到相应博弈过程的纳什均衡。利用典型的5个标准测试函数对GQACA算法寻优性能进行试验测试。试验结果表明: GQACA算法的收敛精度和稳定性均要优于量子蚁群算法(quantum ant colony algorithm, QACA)和蚁群算法(ant colony algorithm, ACA)。
Abstract: Local optimum and low convergence rate were the main problems when used Quantum ant colony algorithm to solve combinatorial optimization, a quantum ant colony algorithm based on game theory (GQACA) was put forward. The algorithm generated a game sequence by the repeated game model, which made every game produce maximum benefit and get Nash equilibrium of the corresponding game process. Five typical test functions were used to make experiment test on the optimal performance of the GQACA algorithm.The experiments showed that the convergence precision and stability of the GQACA algorithm were superior to QACA algorithm and ACA algorithm
[1] | DORIGO M, GARO G D, GAMBARDELLA M. Ant algorithms for discrete optimization[J]. Artificial Life, 1999, 5(2):137-172. |
[2] | STTZLE T, DORIGO M. A short convergence proof for a class of ant colony optimization algorithms[J]. IEEE Transactions on Evolutionary Computation, 2002, 6(4):358-365. |
[3] | LI P C, LI S Y. Quantum ant colony algorithm for continuous space optimization[J]. Control Theory and Applications, 2008, 25(2):237-241. |
[4] | 沈鹏. 物流配送路径优化问题求解的量子蚁群算法[J].计算机工程与应用, 2013, 49(21):56-59. SHEN Peng. Quantum ant colony algorithm for optimization of logistics distribution route[J]. Computer Engineering and Applications, 2013, 49(21):56-59. |
[5] | 金弟, 杨博, 刘杰, 等. 复杂网络簇结构探测—基于随机游走的蚁群算法[J]. 软件学报, 2012,23(3):451-464. JIN Di, YANG Bo, LIU Jie, et al. Ant colony optimization based on random walk for community detection in complex networks[J]. Journal of Software, 2012, 23(3):451-464. |
[6] | 袁浩. 基于量子蚁群算法的粗糙集属性约简方法[J]. 计算机工程与科学, 2010, 32(5):82-84. YUAN Hao. A rough set attribute reduction method based on the quantum ant colony algorithm[J]. Computer Engineering & Science, 2010, 32(5):82-84. |
[7] | 段海滨,王道波,于秀芬. 蚁群算法的研究进展评述[J]. 自然杂志,2006,28(2):102-105. DUAN Haibin, WANG Daobo, YU Xiufen. Review on research progress in ant colony algorithm[J]. Chinese Journal of Nature, 2006, 28(2):102-105. |
[8] | LI P, WANG H. Quantum ant colony optimization algorithm based on bloch spherical search[J]. Neural Network World, 2012, 22(4):325-341. |
[9] | LI P, SONG K, YANG E. Quantum ant colony optimization with application[C]//2010 Sixth International Conference on Natural Computation (ICNC). Yantai, China:IEEE, 2010:2989-2993. |
[10] | CHANDRA MOHAN B, BASKARAN R. A survey: ant colony optimization based recent research and implementation on several engineering domain[J]. Expert Systems with Applications, 2012, 39(4):4618-4627. |
[11] | 刘玉岭, 冯登国, 吴丽辉, 等. 基于静态贝叶斯博弈的蠕虫攻防策略绩效评估[J]. 软件学报, 2012, 23(3):712-723. LIU Yuling, FENG Dengguo, WU Lihui, et al. Performance evaluation of worm attack and defense strategies based on static bayesian game[J]. Journal of Software, 2012, 23(3):712-723. |
[12] | MANIEZZO V, DORIGO M, COLORNI A. The ant system:optimization by a colony of cooperating agents[J].IEEE Transactions on Systems, Man, and Cybernetics-Part B, 1996, 26(1):29-41. |
[13] | HONGGANG W, LIANG M, HUIZHEN Z, et al. Quantum-inspired ant algorithm for knapsack problems[J]. Journal of Systems Engineering and Electronics, 2009, 20(5): 1012-1016. |
[14] | 贾瑞玉,李亚龙,管玉勇. 求解旅行商问题的混合量子蚁群算法[J]. 计算机工程与应用, 2013,49(22):36-39.JIA Ruiyu, LI Yalong, GUAN Yuyong. Hybrid quantum ant colony algorithm for traveling salesman problem[J]. Computer Engineering and Applications, 2013, 49(22):36-39. |
[15] | 田有亮, 马建峰, 彭长根, 等. 秘密共享体制的博弈论分析[J]. 电子学报, 2011, 39(12):2790-2795. TIAN Youliang, MA Jianfeng, PENG Changgen, et al. Game-theoretic analysis for the secret sharing scheme[J]. Acta Electronica Sinica, 2011, 39(12):2790-2795. |
[16] | 朱建明, SRINIVASAN Raghunathan. 基于博弈论的信息安全技术评价模型[J]. 计算机学报, 2009, 32(4):828-834. ZHU Jianming, SRINIVASAN Raghunathan. Evaluation model of information security technologies based on game theoretic[J]. Chinese Journal of Computers, 2009, 32(4):828-834. |
[17] | DORIGO M.Optimization learning and natural algorithms[D]. Milano:Department of Electronics,Politecnico di Milano, Italy, 1992. |
[18] | DIOSAN L, OLTEAN M.What else is the evolution of PSO telling us[J]. Journal of Artificial Evolution and Applications, 2008, 8(2):1-12. |
[19] | THOMAS S, HOLGER H H. Max-min ant system[J].Future Generation Computer Systems, 2000, 16(8):889-914. |
[20] | DORIGO M, GAMBARDELLA L M. Ant colony system: a cooperative learning approach to the traveling salesman problem[J]. Evolutionary Computation, IEEE Transactions on, 1997, 1(1):53-66. |