全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

不连续耦合的时滞复杂动态网络的同步
Synchronization of time-delayed complex dynamical networks with discontinuous coupling

DOI: 10.6040/j.issn.1672-3961.0.2016.122

Keywords: 同步,李雅普诺夫稳定性,复杂网络,时滞,不连续耦合,
discontinuous coupling
,synchronization,Lyapunov stability theory,complex networks,time delay

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 基于李雅普诺夫稳定性理论,对不连续耦合的时滞复杂动态网络进行分析,得到网络同步的充分条件,并且给出网络实现同步时滞的上界估计。研究表明:即使网络之间的耦合是不连续的,只要时滞满足一定条件,网络也可以实现同步,且网络容许的时滞上界与耦合强度、网络代数连通性以及耦合的开关率相关。数值模拟中利用Ikeda系统作为节点动力学,采用误差函数作为网络同步性指标,给出网络同步误差演化轨迹和各状态的演化轨迹,并进一步分析控制参数对同步速度的影响,模拟结果验证了理论结果的正确性。
Abstract: The synchronization problem of complex dynamical networks with time delay and discontinuous coupling was investigated based on Lyapunov stability theory. The sufficient conditions for the networks synchronization was established and the upper bound estimation of the time delay was obtained. The acquired analytical results showed that network with discontinuous coupling could achieve synchronization if time delay met some conditions. The upper bound of the delay for synchronization depended on the coupling strength, the algebraic connectivity of network and on-off rate. The application of numerical simulation results proved that evolution trajectory of network synchronization error and different conditions, in which Ikeda system was used as node dynamics and error function as the network synchronization index. Furthermore, the effect of control parameters on the synchronization speed was analyzed. Numerical examples were provided to verify the effectiveness of the theoretical results

References

[1]  CHEN Liquan, QIU Chengfeng, HUANG H B. Facilitated synchronization of complex networks through a discontinuous coupling strategy[J]. The European Physical Journal B, 2010, 76(4):625-635.
[2]  SUN Yongzheng, WANG Li, ZHAO Donghua. Outer synchronization between two complex dynamical networks with discontinuous coupling[J]. Chaos an Interdisciplinary Journal of Nonlinear Science, 2012, 22(4):517-525.
[3]  ZHOU Jin, CHEN Tianping. Synchronization in general complex delayed dynamical networks[J]. Circuits & Systems I Regular Papers IEEE Transactions on, 2006, 53(3):733-744.
[4]  赵永清, 江明辉. 混合变时滞二重边复杂网络自适应同步反馈控制[J]. 山东大学学报(工学版), 2010, 40(3):61-68. ZHAO Yongqing, JIANG Minghui. Adaptive synchronous feedback control of mixed time-varying delayed and double-linked complex networks[J]. Journal of Shangdong University(Engineering Science), 2010, 40(3):61-68.
[5]  WANG Xiaofan, CHEN Guanrong. Synchronization in small-world dynamical networks[J]. International Journal of Bifurcation & Chaos, 2002, 12(1):187-192.
[6]  WU Xiaoqun, ZHENG Weixing, ZHOU Jin. Generalized outer synchronization between complex dynamical networks[J]. Chaos an Interdisciplinary Journal of Nonlinear Science, 2009, 19(1):193-204.
[7]  涂俐兰, 陆君安. 一类时滞动力网络的时滞相关稳定性[J]. 复杂系统与复杂性科学, 2007, 4(2):33-38. TU Lilan, LU Junan. Delay-dependent stability conditrons in general concplex delayed dynamical networks[J]. Complex System and Complexity Science, 2007, 4(2):33-38.
[8]  CAO Jinde, WANG Zidong, SUN Yonghui. Synchronization in an array of of linearly stochastically coupled networks with time delay[J]. Physica A, 2007, 385(2): 718-728.
[9]  CHEN Liquan, QIU Chengfeng, HUANG H B. Synchronization with on-off coupling: role of time scales in network dynamics[J]. Physical Review E: Statistical Nonlinear & Soft Matter Physics, 2009, 79(4 Pt 2):045-101.
[10]  CHIOU J, WANG C, CHENG Chunming. On delay-dependent stabilization analysis for the switched time-delay systems with the state-driven switching strategy[J]. Journal of the Franklin Institute, 2011, 348(9):2292-2307.
[11]  WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(6684):440-442.
[12]  BARABáSIA L, ALBERT R. Emergence of scaling in random networks[J]. Science, 1999, 286(5439): 509-512.
[13]  郭雷, 许晓鸣. 复杂网络[M]. 上海:上海科技教育出版社, 2006.
[14]  何大韧, 刘宗华, 汪秉宏. 复杂系统与复杂网络[M]. 北京: 高等教育出版社, 2009.
[15]  PECORA L M, CARROLL T L. Master stability functions for synchronized coupled systems[J]. Physical Review Letters, 1998, 80(10): 2109-2112.
[16]  WANG Xiaofan, CHEN Guanrong. Synchronization in scale-free dynamical networks: robustness and fragility[J]. IEEE Transactions on Circuits System I, 2002, 49(1):54-62.
[17]  ZHANG Lixian, BOUKAS E K, LAM J. Analysis and synthesis of Markov jump linear systems with time-varying delays and partially known transition probabilities[J]. IEEE Transactions on Automatic Control, 2008, 53(10):2458-2464.
[18]  李望, 石咏, 马继伟. 复杂动态网络的有限时间外部同步[J]. 山东大学学报(工学版), 2013, 43(2):61-68. LI Wang, SHI Yong, MA Jiwei. Finite-time outer synchronization of complex dynamical networks[J]. Journal of Shangdong University(Engineering Science), 2013, 43(2):61-68.
[19]  孙炜伟, 王玉振. 几类时滞非线性哈密顿系统的稳定性分析[J]. 山东大学学报(理学版), 2007, 42(12):1-9. SUN Weiwei, WANG Yuzhen. Stability analysis for some classes of time-delay nonlinear Hamiltonian systems[J]. Journal of Shangdong University(Natural Science), 2007, 42(12):1-9.
[20]  LU Jinhu, CHEN Guanrong. A time-varying complex dynamical network model and its controlled synchronization criteria[J]. IEEE Transactions on Automatic Control, 2005, 50(6):841-846.
[21]  CHIOU J S. Stability analysis for a class of switched large-scale time-delay systems via time-switched method[J]. IEEE Proceedings: Control Theory and Applications, 2006, 153(6):684-688.
[22]  HUNT D, KOMISS G, SZYMANSKI B K. Network synchronization in a noisy environment with time delays: fundamental limits and trade-offs[J]. Physical Review Letters, 2010, 105(6):2155-2212.
[23]  张颖, 段广仁. 时滞离散切换系统基于观测器的输出反馈镇定[J]. 山东大学学报(工学版), 2005, 35(3):40-43. ZHANG Ying, DUAN Guangren. Observer-based output feedback stabilization for a class of discrete-time switched systems with time-delay[J]. Journal of Shangdong University(Engineering Science), 2005, 35(3):40-43.
[24]  YU Wenwu, CAO Jinde. Synchronization control of stochastic delayed neural networks[J]. Physica A, 2007, 373(1):252-260.
[25]  汪小帆, 李翔, 陈关荣. 复杂网络理论及其应用[M]. 北京:清华大学出版社, 2006.
[26]  ARENAS A, DíAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks[J]. Physics Reports, 2008, 469(3): 93-153.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133