|
- 2018
基于PDEs的图像特征提取方法
|
Abstract:
摘要: 针对提取图像判别信息的基于偏微分方程(partial differential equations, PDEs)的方法做了进一步研究。研究进化次数对图像特征质量的影响和压缩函数的压缩速度对图像特征质量的影响。试验结果表明:PDEs的进化可以降低遮挡的影响以及对光暗具有鲁棒性,但PDEs的进化次数以及压缩函数和压缩速度严重影响图像特征质量。
Abstract: Further research was conducted on image feature extraction method based on partial differential equations(PDEs). The effect of evolution times on quality of feature, and the reflection of compression function on the quality of feature were studied. Experiment results indicated that the evolution of PDEs could reduce the impact of occlusion and be robust to dark light, but the qualities of the image features could be seriously affected by evolution times of PDEs and compression function and compression speed
[1] | AFFONSO C, ROSSI A L, VIEIRA F H, et al. Deep learning for biological image classification[J]. Expert Systems with Applications, 2017, 85:114-122. |
[2] | YANG Meng, CHANG Heyou, LUO Weixin, et al. Fisher discrimination dictionary pair learning for image classification[J]. Neurocomputing, 2017, 269:13-20. |
[3] | LU Bo, WANG Guoren, YUAN Ye, et al. Semantic concept detection for video based on extreme learning machine[J]. Neurocomputing, 2013, 102:176-183. |
[4] | HUANG Sheng, YANG Dan, GE Yongxin, et al. Combined supervised information with PCA via discriminative component selection[J]. Information Processing Letters, 2015, 115:812-816. |
[5] | 崔燕,范丽亚. 高维数据正定核与不定核的KPCA变换阵比较[J]. 山东大学学报(工学版), 2011, 41(1):17-24. CUI Yan, FAN Liya. Comparison of KPCA transformation matrices with definite and indefinite kernels for high-dimensional data[J]. Journal of Shandong university(Engineering science), 2011, 41(1):17-24. |
[6] | GYAMFI K S, BRUSEY J, HUNT A, et al. Linear classifier design under heteroscedasticity in linear discriminant analysis[J]. Expert Systems with Applications, 2017, 79:44-52. |
[7] | SAUL L K, WEINBERGER K Q, HAM J H, et al. Spectral methods for dimensionality reduction[J]. Semisupervised Learning, 2006:293-308. |
[8] | FANG Cong, ZHAO Zhenyu, ZHOU Pan, et al. Feature learning via partial differential equation with applications to face recognition[J]. Pattern Recognition, 2017, 69:14-25. |
[9] | GEORGHIADES A, BELHUMEUR P, KRIEGMAN D. From few to many: illuminationcone models for face recognition under variable lighting and pose[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001, 23(6):643-660. |
[10] | GAUDIOSO M, GORGONE E, LABBE M, et al. Lagrangian relaxation for SVM feature selection[J]. Computers and Operations Research, 2017, 87:137-145. |
[11] | YUAN Youli, ZHANG Min, LUO Pengfei, et al. SVM-based detection in visible light communications[J]. Optik, 2017, 151:55-64. |
[12] | BRUNA J, MALLAT S. Invariant scattering convolution networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2013, 35(8):1872-1886. |
[13] | LIU Risheng, LIN Zhouchen, ZHANG Wei, et al. Toward designing intelligent PDEs for computer vision: an optimal control approach[J]. Image and Vision Computing, 2013, 31(1):43-56. |
[14] | LI Haojie, LIU Lijuan, SUN Fuming, et al. Multi-level feature representations for video semantic concept detection[J]. Neurocomputing, 2016, 172:64-70. |
[15] | 杨静, 范丽亚. 基于模糊隶属度的加权广义不定核判别分析[J]. 山东大学学报(工学版), 2012, 42(3):31-38. YANG Jing, FAN Liya. Weighted generalize indefinite kernel discriminant analysis based on fuzzy membership[J]. Journal of Shandong university(Engineering science), 2012, 42(3):31-38. |
[16] | LENC L, KRAL P. Automatic face recognition system based on the SIFT features[J]. Computers and Electrical Engineering, 2015, 46:256-272. |
[17] | ALILOU V K, YAGHMAEE F. Non-texture image inpainting using histogram of oriented gradients[J]. Journal of Visual Communication & Image Representation, 2017, 48:43-53. |
[18] | LIU Risheng, ZHONG Guangyu, ZHOU Pan, et al. Learning to Diffuse: A new perspective to design PDEs for visual analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38(12):2457-2471. |