全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2015 

带有噪音的稀疏解的稳定性分析的注
A note on the analysis of stability of noised sparse solutions

DOI: 10.6040/j.issn.1672-3961.0.2015.032

Keywords: 噪音,矩阵奇异值,稳定性,欠定线性方程组,稀疏解,
the underdetermined linear systems
,singular value of matrix,stability,sparse solution,noise

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: DONOHO D L, ELAD M等人分别利用矩阵的相干性和sparkη(A)的性质证明了(P0ε)问题的稳定性定理。本研究首先通过反例指出ELAD M的证明过程存在错误,其次利用sparkη(A)和矩阵奇异值的性质重新证明(P0ε)问题的稳定性定理。
Abstract: Donoho D L and Elad M proved stability theorem of problem (P0ε) by using the properties of matrix's mutual-coherence and sparkη(A) respectively. Counter-example was used to show that there were some mistakes in Elad M's proof, and then stability theorem of problem (P0ε) was reproved by using the properties of sparkη(A) and the singular value of matrix

References

[1]  ELAD M. Sparse and redundant representations[M]. London:Springer, 2010:85-86.
[2]  DONOHO D L, ELAD M. Optimally sparse representation in general (nonorthogonal) dictionaries vial1 minimization[J].Proceedings of the National Academy of Sciences, 2003, 100(5):2197-2202.
[3]  DONOHO D L, HUO X. Uncertainty principles and ideal atomic decomposition[J]. IEEE Transactions on Information Theory, 1999, 47(7):2845-2862.
[4]  PATI Y C, REZAIIFAR R, KRISHNAPRASAD P S. Orthogonal matching pursuit: recursive function approximation with applications to wavelet decomposition[J].IEEE Transactions on Information Theory, 1993, 10(7):40-44.
[5]  DONOHO D L. High-dimensional centrally symmetric polytopes with neighborliness proportional to dimension[J]. Discrete and Computional Geometry, 2006, 35(4):617-652.
[6]  CANDES E J, TAO T. Decoding by linear programing[J]. IEEE Transactions on Information Theory, 2005, 51(12):4203-4215.
[7]  CANDES E J, ROMBERG J, TAO T. Stable signal recovery from incomplete and inaccurate measurements[J]. Communications on Pure and Applied Mathematics, 2006, 59(8):1207-1223.
[8]  BARANIUK R G. Compressed sensing[J].IEEE Signal Processing Magazine, 2007, 24(6):118-121.
[9]  DONOHO D L, ELAD M, TEMLYAKOV V. Stable recovery of sparse overcomplete representations in the presence of noise[J]. IEEE Transactions on Information Theory, 2006, 52(1):6-18.
[10]  DONOHO D L. Compressed sensing[J]. IEEE Transactions on Information Theory, 2006, 52(4):1289-1306.
[11]  COHEN A, DAHMEN W, DWVORE R. Compressed sensing and best <i>k</i>-term approximation[J]. Journal of the American Society, 2009, 22(1):211-231.
[12]  石光明, 刘丹华. 压缩感知理论及其研究进展[J].电子学报, 2009, 37(5):1070-1081. SHI Guangming, LIU Danhua. Advance in theory and application of compressed sensing[J]. Acta Electronica Sinica, 2009, 37(5):1070-1081.
[13]  FIGUEIREDO M A T, NOWAK R D. An EM algorithm for wavelet-based image restoration[J]. IEEE Transactions On Image Processing, 2003, 12(8):906-916.
[14]  LI Y, CICHOCKI A, AMARI S. Sparse component analysis for blind source separation with less sensors than source[C]//Processdings of 4th International Symposium on Independent Component Analysis and Blind Signal Separation.Nara, Japan:[s.n.], 2003:89-94.
[15]  HUO S, ZHANG Z. Matching pursuit with timefrequency dictionaries[J].IEEE Transactions on Signal Processing, 1993, 41(12):3397-3415.
[16]  CHEN S S, DONOHO D L, SAUNDERS M A. Atomic decomposition by basis pursuit[J]. SIAM Review, 2001, 43(1):129-159.
[17]  GOLOMB S W, BAUMERT L D. The Search for Hadamard Matrices[J]. American Mathematical Society, 1963, 70(1):12-17.
[18]  LAI M J. On sparse solutions of under-determinedlinear systems[J].Journal of Concrete and Applicable Mathematics, 2010, 8:296-327.
[19]  CANDES E J, TAO T. Near optimal signal recovery from random projections: universal encoding strateies[J].IEEE Transactions on Information Theory, 2006, 52(12):5406-5425.
[20]  许志强. 压缩感知[J]. 中国科学:数学, 2012, 42(9):865-877. XU Zhiqiang. Compressed sensing[J].Science China:Math, 2012, 42(9):865-877.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133