|
- 2017
酸蚀时间对喷砂后TC4钛合金表面形貌及抗腐蚀性的影响
|
Abstract:
摘要: 为研究喷砂酸蚀表面改性方法中酸蚀时间对喷砂后TC4钛合金表面形貌和抗腐蚀性的影响,采用220目的Al2O3颗粒对钛合金表面进行喷砂处理,然后对喷砂后的样品在HCl/H2SO4混合酸液中分别酸蚀不同的时间(0.5、1、2、3 h),并以抛光组为对照。通过扫描电子显微镜(scanning electron microscopy, SEM)和3D共聚焦显微镜对各组钛片的表面形貌进行表征和表面粗糙度测量。然后运用电化学工作站对各组样品进行耐腐蚀性试验,以评价各组样品的腐蚀行为。试验结果表明,随酸蚀时间的延长,钛合金表面形貌由杂乱趋于均匀化,粗糙度呈现先升后降趋势。2 h时粗糙度达到峰值,表面微孔比例最高,界面扩展面积比达222%。在抗腐蚀性能方面,所有喷砂酸蚀组抗腐蚀性均优于抛光组,表明喷砂酸蚀处理有助于生成腐蚀保护作用更强的氧化膜,且随时间延长,腐蚀倾向减小,3 h时最优。
Abstract: TC4 Titanium plates were etched by HCl/H2SO4 mixture after being blasted by Al2O3 particles of size 220 to investigate the effect of different etching time(0.5,1, 2 and 3 h)on the surface morphology and corrosion resistance, while the polishing treatment was set as the control group. The surface morphology of the titanium alloy samples was characterized by scanning electron microscopy(SEM)and 3D laser confocal microscopy followed by the surface roughness measurement. Then the corrosion resistance measurement was carried out by the electrochemical workstation to evaluate the corrosion behavior of all samples. The results showed that with the prolongation of etching time, the surface morphology of titanium alloy tended to be homogenized from clutter, and the roughness first rose and then decreased. Group 2 h had the maximum roughness and the highest proportion of surface micropores, and the interface expansion area ratio was 222%. In terms of corrosion resistance, all of the sandblasting and acid-etching(SLA)groups performed better than the polishing group, indicating that the SLA treatment can be beneficial for generating oxide film which possesses better corrosion resistance. Besides, with the extending of etching time, the corrosion tendency was smaller, and the group 3 h performed the best of all groups
[1] | 董菲, 丁仲鹃, 牛涛. TiO<sub>2</sub>喷砂酸蚀处理对钛片表面氧化膜及成骨细胞生长影响的研究[J]. 华西口腔医学杂志, 2008, 26(1): 10-14. DONG Fei, DING Zhongjuan, NIU Tao. Effects of TiO<sub>2</sub> blasted and acid-etched titanium surfaces on oxide-film and osteoblast[J]. West China Journal of Stomatology, 2008, 26(1):10-14. |
[2] | 董福生, 栗兴超, 孙士军. 纯钛种植体粗化表面的构建及形貌分析[J]. 中国口腔种植学杂志, 2009(2):6-7. DONG Fusheng, LI Xingchao, SUN Shijun. Construction of roughness treatment to pure titanium implant surface and topography analysis[J]. Chinese Journal of Oral Implantology, 2009(2): 6-7. |
[3] | LIN Z, WANG Y, WANG D, et al. Porous structure preparation and wettability control on titanium implant[J]. Surface and Coatings Technology, 2013, 228: S131-S136. |
[4] | 焦岩. 生物医用钛合金表面处理及其微结构[D]. 大连: 大连理工大学, 2013. JIAO Yan. Surface treatment and microstructure of biomedical titanium alloy[D]. Dalian: Dalian University of Technology, 2013. |
[5] | GROTBERG J, HAMLEKHAN A, BUTT A, et al. Thermally oxidized titania nanotubes enhance the corrosion resistance of Ti6Al4V[J]. Materials Science and Engineering: C, 2016, 59: 677-689. |
[6] | CHANDER K P, VASHISTA M, SABIRUDDIN K, et al. Effects of grit blasting on surface properties of steel substrates[J]. Materials & Design, 2009, 30(8): 2895-2902. |
[7] | 王亚敏. 不同粗化喷砂-酸蚀纯钛表面的性能研究[D]. 广州:南方医科大学, 2011. WANG Yamin. The investigation of different roughed sandblasted/alumina/acid etched titanium surfaces[D]. Guangzhou: Southern Medical University, 2011. |
[8] | 庞骏德, 王杨, 蔺增. 牙种植体表面喷砂酸蚀工艺的优化[J]. 中国表面工程,2014, 27(2):102-109. PANG Junde, WANG Yang, LIN Zeng. Sandblasted and acid-etched process optimization of the dental implant[J]. China Surface Engineering, 2014, 27(2):102-109. |
[9] | 张松营. 医用钛合金表面不同粒度Al<sub>2</sub>O<sub>3</sub>喷砂酸蚀及多巴胺涂层研究[D]. 兰州:兰州大学, 2014. ZHANG Songying. Surface treatments of medical titanium alloy by Al<sub>2</sub>O<sub>3</sub> blasting with different sizes and acid etching and dopamine coating[D]. Lanzhou: Lanzhou University, 2014. |
[10] | ASSIS S LD, WOLYNEC S, COSTA I. Corrosion characterization of titanium alloys by electrochemical techniques[J]. Electrochimica Acta, 2006, 51(8-9): 1815-1819. |
[11] | PINA V G, AMIGó V, MU(~overN)OZ A I. Microstructural, electrochemical and tribo-electrochemical characterisation of titanium-copper biomedical alloys[J]. Corrosion Science, 2016, 109: 115-125. |
[12] | LIANGS X, FENG X J, YIN L X, et al. Development of a new β Ti alloy with low modulus and favorable plasticity for implant material[J]. Materials Science and Engineering: C, 2016, 61: 338-343. |
[13] | 于振涛, 韩建业, 麻西群, 等. 生物医用钛合金材料的生物及力学相容性[J]. 中国组织工程研究, 2013, 17(25): 4707-4714. YU Zhentao, HAN Jianye, MAXiqun, et al. Biological and mechanical compatibility of biomedical titanium alloy materials[J]. Chinese Journal of Tissue Engineering Research, 2013, 2(4):175-202. |
[14] | 赵凤娟, 宋英, 王福平. 医用钛合金及其表面活化的研究现状[J]. 金属热处理, 2009, 34(2): 106-110. ZHAO Fengjuan, SONG Ying, WANG Fuping. Research status of biomedical titanium alloy and its surface activation[J]. Heat Treatment of Metals, 2009, 34(2):106-110. |
[15] | WEI D, FENG W, DU Q, et al. Titania nanotube/nano-brushite composited bioactive coating with micro/nanotopography on titanium formed by anodic oxidation and hydrothermal treatment[J]. Ceramics International, 2015, 41(10): 13115-13125. |
[16] | 马凯, 赵宝红, 邓春富. 医用钛及钛合金牙种植体生物相容性及其相关抗菌性能研究进展[J]. 中国实用口腔科杂志, 2016, 9(7): 441-445. MA Kai, ZHAO Baohong, DENG Chunfu. Research advances on the biocompatibility and related antibacterial properties of biomedical titanium and titanium alloy dental implants[J]. Chinese Journal of Practical Stomatology, 2016, 9(7):441-445. |
[17] | 王桂森, 万熠, 王滕, 等. 植入体微纳结构表面制备及生物相容性研究综述[J]. 表面技术, 2016, 45(5): 8-18. WANG Guisen, WAN Yi, WANG Teng, et al. Review on preparation of micro-nano structure on implant surface and its biocompatibility[J]. Surface Technology, 2016, 45(5): 8-18. |
[18] | ZAVERI N, MCEWEN G D, KARPAGAVALLI R, et al. Biocorrosion studies of TiO2 nanoparticle-coated Ti—6Al—4V implant in simulated biofluids[J]. Journal of Nanoparticle Research, 2010, 12(5): 1609-1623. |
[19] | 王明, 宋西平. 医用钛合金腐蚀、力学相容性和生物相容性研究现状[J]. 钛工业进展, 2008, 25(2): 13-18. WANG Ming, SONG Xiping. Study actuality of corrosion, mechanical compatibility and biocompatibility of titanium alloys for medical application[J]. Titanium Industry Progress, 2008, 25(2):13-18. |
[20] | 杨东, 郭金明. 钛合金的腐蚀机理及耐蚀钛合金的发展现状[J]. 钛工业进展, 2011, 28(2): 4-7. YANG Dong, GUO Jinming. Corrosion mechanism of titanium alloys and development of corrosion-resistance titanium alloys[J]. Titanium Industry Progress, 2011, 28(2): 4-7. |
[21] | CAI Z, NAKAJIMA H, WOLDU M, et al. In vitro corrosion resistance of titanium made using different fabrication methods[J]. Biomaterials, 1999, 20(2):183-190. |
[22] | SEN D, CHAVAN N M, RAO D S, et al. Influence of grit blasting on the roughness and the bond strength of detonation sprayed coating[J]. Journal of Thermal Spray Technology, 2010, 19(4): 805-815. |
[23] | ZHANG D C, WANG Y, LIN J G, et al. Microstructure and superelasticity of a biomedical β-type titanium alloy under various processing routes[J]. Applied Materials Today, 2016, 5: 41-51. |