全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一种长文本辅助短文本的文本理解方法
A document understanding method for short texts by auxiliary long documents

DOI: 10.6040/j.issn.1672-3961.0.2017.402

Keywords: 短文本理解,主题模型,二元狄利克雷多项回归模型,
short text understanding
,dual dirichlet-multinomial regression model,topic model

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 在狄利克雷多项回归(dirichlet-multinomial regression, DMR)模型的基础上,提出一个长文本辅助短文本理解的二元狄利克雷多项回归(dual dirichlet-multinomial regression, DDMR)模型。来自不同数据源的长短文本共享一个主题集合,并采用不同的狄利克雷先验产生长短文本的主题分配,使得长文本的主题知识能够迁移到短文本中,改善短文本的理解。试验表明,DDMR模型在短文本的主题发现效果上具有较大的提升作用。
Abstract: Based on the dirichlet-multinomial regression(DMR)model, a dual dirichlet-multinomial regression(DDMR)model that short texts were understood by auxiliary long documents was proposed. A topic set was shared by long documents and short texts which came from different data sources, and two dirichlet priors were used to generate the topic allocation of long documents and short texts, which enabled the topic knowledge of long documents to be transferred to short texts and improved understanding of the short text. The experiments showed that the DDMR model had a great effect on the topical discovery of short texts

References

[1]  HU X, SUN N, ZHANG C, et al. Exploiting internal and external semantics for the clustering of short texts using world knowledge[C] //Proceedings of the 18th ACM Conference on Information and Knowledge Management. New York, USA: ACM, 2009:919-928.
[2]  LIU D C, NOCEDAL J. On the limited memory BFGS method for large scale optimization[J]. Mathematical Programming, 1989, 45(3):503-528.
[3]  ZHONG S. Semi-supervised model-based document clustering: a comparative study[J]. Machine Learning, 2006, 65(1):3-29.
[4]  YIN J, WANG J. A dirichlet multinomial mixture model-based approach for short text clustering [C] //Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA: ACM, 2014:233-242.
[5]  CELEUX G, DIEBOLT J. The SEM algorithm: a probabilistic teacher algorithm derived from the EM algorithm for the mixture problem[J]. Computationalstatistics Quarter, 1985(2):73-82.
[6]  WENG J, LIM E P, JIANG J, et al. Twitter Rank: finding topic-sensitive influential twitterers[C] //Proceedings of the third ACM International Conference on Web Search and Data Mining. New York, USA: ACM, 2010:261-270.
[7]  BLEI D M, NG A Y, JORDAN M I. Latent dirichlet allocation[J]. Journal of Machine Learning Research, 2003, 3:993-1022.
[8]  SAHAMI M, HEILMAN T D. A web-based kernel function for measuring the similarity of short text snippets[C] //Proceedings of the 15th International Conference on World Wide Web. New York, USA: ACM, 2006:377-386.
[9]  SEIFZADEH S, FARAHAT A K, KAMEL M S, et al. Short-textclustering using statistical semantics[C] //Proceedings of the 24th International Conference on World Wide Web. New York, USA: ACM, 2015:805-810.
[10]  PHAN X H, NGUYEN C T, LE DT, et al. A hidden topic-based framework toward building applications with short web documents[J]. IEEE Transactions on Knowledge & Data Engineering, 2011, 23(7):961-976.
[11]  PHAN X H, NGUYEN L M, HORIGUCHI S. Learning to classify short and sparse text & web with hidden topics from large-scale data collections[C] //Proceedings of the 17th International Conference on World Wide Web. New York, USA: ACM, 2008:91-100.
[12]  YAN X, GUO J, LAN Y, et al. A biterm topic model for short texts[C] //Proceedings of the 22nd International Conference on World Wide Web. New York, USA: ACM, 2013:1445-1456.
[13]  RAINA R, NG A Y, KOLLER D. Constructing informative priors using transfer learning[C] //Proceedings of the 23rd International Conference on Machine learning. New York, USA: ACM, 2006:713-720.
[14]  JIN O, LIU N N, ZHAO K, et al. Transferring topical knowledge from auxiliary long texts for short text clustering[C] //Proceedings of the 20th ACM International Conference on Information and Knowledge management. New York, USA: ACM, 2011:775-784.
[15]  HONG L, DAVISON B D. Empirical study of topic modeling in Twitter[C] //Proceedings of the first Workshop on Social Media Analytics. New York, USA: ACM, 2010:80-88.
[16]  MIMNO D, MCCALLUM A. Topic models conditioned on arbitrary features with dirichlet-multinomial regression[C] //Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence. Corvallis, Oregon, USA: AUAI Press, 2012:411-418.
[17]  GABRILOVICH E. Feature generation for textual information retrieval using world knowledge[J]. ACM, 2007, 41(2):123-123.
[18]  HOTHO A, STAAB S, STUMME G. Ontologies improve text document clustering[C] //Proceedings of the third IEEE International Conference on Data Mining. Washington, D C, USA: IEEE Computer Society, 2003:541-544.
[19]  WANG Z, MI H, ITTYCHERIAH A. Semi-supervised clustering for short text via deep representation learning[C] //Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning. Stroudsburg, USA: ACL, 2016:31-39.
[20]  TANG J, ZHANG J, YAO L, et al. ArnetMiner: extraction and mining of academic social networks[C] //Proceedings of the 14th ACM SIGKDD International Conference on Knowledge discovery and Data Mining. New York, USA: ACM, 2008:990-998.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133