|
- 2018
基于卷积神经网络的中文财经新闻分类方法
|
Abstract:
摘要: 针对目前财经领域内新闻数据杂乱无章、缺乏自动高效管理等问题,提出一种基于卷积神经网络的中文财经新闻分类方法。收集大规模财经新闻语料,通过无监督学习方法训练获得一个广义通用的财经类词向量模型,将词向量引入到卷积神经网络模型训练中实现有效分类。与传统方法相比,基于卷积神经网络的中文财经新闻分类方法网络模型结构简单,针对小样本集也能表现优异的性能,不仅能有效解决中文财经新闻分类问题,还可充分证明卷积神经网络在处理文本分类问题中的有效性。
Abstract: In order to complete the task of financial news classification, a new method based on convolutional neural network for the classification of Chinese financial news was presented. A simple CNN was trained with one layer of convolution on top of word vectors obtained from an unsupervised neural language model. These vectors were trained on a large number of financial news corpus. Compared with the traditional methods, the network model based on convolutional neural network was simple in structure, which could show excellent performance by using small sample set. The method not only could solve the Chinese financial news classification problem effectively, but also prove the effectiveness of convolutional neural network in dealing with problems of text classification fully
[1] | 奚雪峰, 周国栋. 面向自然语言处理的深度学习研究[J]. 自动化学报, 2016, 42(10): 1445-1565. XI Xuefeng, ZHOU Guodong. A survey on deep learning for natural language processin[J]. Acta Automatica Sinica, 2016, 42(10): 1445-1565. |
[2] | 陈钊,徐睿峰,桂林,等. 结合卷积神经网络和词语情感序列特征的中文情感分析[J]. 中文信息学报, 2015, 29(6): 172-178. CHEN Zhao, XU Ruifeng, GUI Lin, et al. Combining convolutional neural networks and word sentiment sequence features for Chinese text sentiment analysis[J]. Processing of Journal of chinese Imformation, 2015, 29(6): 172-178. |
[3] | DONG L, LIU S J, ZHOU M, et al. A statistical parsing framework for sentiment classification[J]. Computational Linguistic, 2015, 41(2): 293-336. |
[4] | SZEGEDY C, LIU W, JIA Y, et al. Going deeper with convolutions[C] //Proceedings of Conference on Computer Vision and Pattern Recognition(CVPR). Boston, USA: IEEE, 2015: 1-9. |
[5] | BENGIO Y, DUCHARME R, VINCENT P, et al. A neural probabilistic language model[J]. The Journal of Machine Learning Research, 2006, 3(6):1137-1155. |
[6] | FISCHER A, IGEL C. An introduction to restricted Boltzmann machines[C] //Iberoamerican Congress on Pattern Recognition. Berlin, Germany: Springer, 2012: 14-36. |
[7] | MNIH A, HINTON G. A scalable hierarchical distributed language model[C] //International Conference on Neural Information Processing Systems. Vancouver, Canada: NIPS, 2008: 1081-1088. |
[8] | COLLOBERT R, WESTON J,BOTTOU L, et al. Natural language processing(almost)from scratch[J]. The Journal of Machine Learning Rearch, 2011, 12(1): 2493-2537. |
[9] | ZHOU Shusen, CHEN Qingcai, WANG Xiaolong. Convolutional active deep learning method for semi-supervised sentiment classification[J]. Necuro computing, 2013, 120(10): 536-546. |
[10] | SOCHER B, HUVAL C, MANNING A. Semantic compositionality through recursive matrix-vector spaces[C] //Proceedings of the 2012 Joint Conference on Empirical Methods in Natural Language Processing and Computational Natural Language Learning. Jeju Island, Korea: ACL, 2012: 1201-1211. |
[11] | KIM Y. Convolutional neural networks for sentence classification[C] //Proceedings of the EMNLP. Doha, Qatar: Association for Computational Linguistics, 2014: 1746-1751. |
[12] | MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space[EB/OL]. [2017-06-20]. https://arxiv.org/pdf/1301.3781v3.pdf |
[13] | WANG S, MANNING C D. Baselines and bigrams: Simple, good sentiment and topic classification[C] //Proceedings of the 50th Annual Meeting of the Association for Computational Linguistics. Jeju Island, Korea: ACL, 2012: 90-94. |
[14] | KRIZHEVSKY A, SUTSKEVER I, HINTON G. Imagenet classification with deep convolutional neural networks[J]. Advances in Neural Information Processing Systems, 2012, 60(2): 1097-1105. |
[15] | SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[EB/OL].[2017-06-20]. https://arxiv.org/pdf/1409.1556v6.pdf. |
[16] | BLUNSOM P, GREFENSTEEN E, KALCHBRENNER N. et al. Aconovolutional neural network for modelling sentences[C] //Proceedings of 52nd Annual Meeting of the Association for Computational Linguistics. Baltimore, USA: ACL, 2014: 655-665. |
[17] | BOTTOU L. Large-scale machine learning with stochastic gradient descent[C] //Proceedings of COMPATAT’2010. Berlin, Germany: Springer, 2010: 177-186. |
[18] | ZEILER M. ADADELTA: An adaptive learning rate method[EB/OL]. [2017-06-20]. https://arxiv.org/pdf/1212.5701v1.pdf. |
[19] | SOCHER R, PENNINGTON J, HUANG E H, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions[C] //Proceedings of the Conference on Empirical Methods in Natural Language Processing. Edinburgh, Britain: ACL, 2011: 151-161. |
[20] | JOHNSON R, ZHANG T. Effective use of word order for text categorization with convolutional neural networks[J]. Eprint Arxiv, 2014:1412. |
[21] | HINTON G E, SRIVASTAVA N, KRIZHEVSKY A, et al. Improving neural networks by preventing co-adaptation of feature detectors[EB/OL]. [2017-06-20]. https://arxiv.org/pdf/1207.0580v1.pdf. |
[22] | MIOLOV T, SUTSKEVER I, CHEN K, et al. Distributed representations of words and phrases and their compositionality[C] //Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, USA: NIPS, 2013: 3111-3119. |
[23] | 徐姗姗, 刘应安, 徐昇. 基于卷积神经网络的木材缺陷识别[J]. 山东大学学报(工学版), 2013, 43(2): 23-28. XU Shanshan, LIU Ying'an, XU Sheng. Wood defects recognition based on the convolutional neural network[J]. Journal of Shandong University(Engineering Science), 2013, 43(2): 23-28. |
[24] | 唐明,朱磊,邹显春. 基于Word2vec的一种文档向量表示[J]. 计算机科学,2016, 43(6): 264-269. TANG Ming, ZHU Lei, ZOU Xianchun, et al. Documenl vector representation based on Word2vec[J]. Computer Science, 2016, 43(6): 264-269. |
[25] | NAKAGAWA K, INUI S, KUROHASHI S. Dependency tree-based sentiment classification using CRFs with hidden variables[C] //The 2010 Annual Conference of the North American Chapter of the Association for Computational Linguistics. Los Angeles, USA: ACL, 2010: 786-794. |