全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

Bi7Ti4NbO21的合成、酸化及光催化性能
Fabrication and acid treatment of Bi7Ti4NbO21 and their photocatalytic properties

DOI: 10.6040/j.issn.1672-3961.0.2016.257

Keywords: 光催化,Bi2Ti2O7,Bi7Ti4NbO21,降解,酸化,
acid treatment
,photocatalytic,degradation,Bi2Ti2O7,Bi7Ti4NbO21

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 采用化学溶液分解法制备了Aurivillius结构钛酸铋铌化合物Bi7Ti4NbO21,并对其进酸化处理。X射线衍射(X-ray diffraction, XRD)表征表明, 500 ℃以上的温度进行热处理,可以制得结晶性良好的Bi7Ti4NbO21。 对Bi7Ti4NbO21进行浓硝酸酸化处理,可转化为结晶性良好的焦绿石结构钛酸铋化合物Bi2Ti2O7。采用SEM观察了所合成的Bi7Ti4NbO21和Bi2Ti2O7的形貌和尺寸。在紫外光照射下对甲基橙的光催化降解实验表明,所合成的钛酸铋铌化合物Bi7Ti4NbO21及其酸化产物钛酸铋Bi2Ti2O7均具有良好的光催化活性。试验结果表明,光催化剂颗粒的结晶性及其尺寸对其光催化活性均具有很大影响。550 ℃热处理得到的Bi7Ti4NbO21具有最高的催化活性,而将钛酸铋铌酸化处理得到的Bi2Ti2O7其光催化性能显著提高,优于标准光催化剂P25。
Abstract: Aurivillius compound Bi7Ti4NbO21 was fabricated by a chemical solution decomposition method(CSD)and acid treated. X-ray diffraction(XRD)analysis revealed that well-crystallized Bi7Ti4NbO21 could be prepared with a calcination temperature at or above 550 ℃. Well-crystallized Bi2Ti2O7 with uniform particle sizes was obtained by concentrated nitric acid treatment. Field emission scanning electron microscopy(FESEM)was used to examine the morphology and particles size of as-prepared Bi7Ti4NbO21 and acid-treated product Bi2Ti2O7. The results showed that both Bi7Ti4NbO21 and Bi2Ti2O7 were highly photocatalytic active for the degradation of organic dye methyl orange under UV light irradiation. The crystallinity and particles size of as-prepared photocatalysts were found to strongly influence the photocatalytic activities. The BTN-550 calcined at 550 ℃ showed the highest activity of as-prepared Bi7Ti4NbO21. The Bi2Ti2O7 obtained by acid-treated Bi7Ti4NbO21 exhibited remarkable enhanced photocatalytic activity which was superior to that of P25

References

[1]  ZHANG C, ZHU Y. Synthesis of square Bi<sub>2</sub>WO<sub>6</sub> nanoplates as high-activity visible-light-driven photocatalysts[J]. Chemistry of Materials, 2005, 17(13): 3537-3545.
[2]  SHIMODAIRA Y, KATO H, KOBAYASHI H, et al. Photophysical properties and photocatalytic activities of bismuth molybdates under visible light irradiation[J]. Journal of Physical Chemistry B, 2006, 37(49): 17790-17797.
[3]  FAN C, DAMJANOVIC D, STEINER O, et al. Piezoelectricity and phase transitions of the mixed-layer bismuth titanate niobate Bi<sub>7</sub>Ti<sub>4</sub>NbO<sub>21</sub>[J]. Journal of the American Ceramic Society, 1995, 78(11): 3142-3144.
[4]  YAO W F, XU X H, WANG H, et al. Photocatalytic property of perovskite bismuth titanate[J]. Applied Catalysis B: Environmental, 2004, 52(2): 109-16.
[5]  YAO W F, WANG H, XU X H, et al. Photocatalytic property of bismuth titanate Bi<sub>2</sub>Ti<sub>2</sub>O<sub>7</sub>[J]. Applied Catalysis A: General, 2004, 259(1): 29-33.
[6]  KUDO A, KATO H, TSUJI I. Strategies for the development of visible-light-driven photocatalysts for water splitting[J]. Chemistry Letter, 2004, 33(12):1534-1539.
[7]  HORIUCHI S, KIKUCHI T, GOTO M. Structure determination of a mixed-layer bismuth titanate, Bi<sub>7</sub>Ti<sub>4</sub>NbO<sub>21</sub>, by super-high-resolution electron microscopy[J]. Acta Crystallographica, 1977, 33(5):701-703.
[8]  MOHN C E, STΦLEN S. Influence of the stereochemically active bismuth lone pair structure on ferroelectricity and photocalytic activity of Aurivillius phase Bi<sub>2</sub>WO<sub>6</sub>[J]. Physical Review B Condensed Matter, 2011, 83(1):225-233.
[9]  LI M, PIETROWSKI M J, SOUZA R A D, et al. A family of oxide ion conductors based on the ferroelectric perovskite Na<sub>0.5</sub>Bi<sub>0.5</sub>TiO<sub>3</sub>[J]. Nature Materials, 2014, 13:31-35.
[10]  KIKUCHI K, TAIRA T, SUGIMOTO N. Highly-nonlinear bismuth oxide-based glass fibers for all-optical signal processing[J]. Optical Fiber Communication Conference & Exhibit, 2002: 567-568.
[11]  KIKUCHI T. Synthesis of new layered bismuth titanates Bi<sub>7</sub>Ti<sub>4</sub>NbO<sub>21</sub> and Bi<sub>6</sub>Ti<sub>3</sub>WO<sub>18</sub>[J]. Journal of the Less Common Metals, 1976, 48(2): 319-323.
[12]  BOULLAY P, MERCURIO D. Structural behaviour of the mixed-layer Aurivillius-phase Bi<sub>7</sub>Ti<sub>4</sub>NbO<sub>21</sub>[J]. Integrated Ferroelectrics, 2004, 62(62): 149-154.
[13]  YI Z G, LI Y X, WANG Y, et al. Dielectric and ferroelectric properties of intergrowth Bi<sub>7-<i>x</i></sub>La<sub><i></i></sub><i>x</i>Ti<sub>4</sub>NbO<sub>21</sub> ceramics[J]. Applied Physics Letters, 2006, 88(15):152909(1-3).
[14]  KIM C J, HONG S G. Ferroelectric properties of bismuth titanate niobate Bi<sub>7</sub>Ti<sub>4</sub>NbO<sub>21</sub> thin film[J]. Thin Solid Films, 2000, 365(1): 58-60.
[15]  刘辉晖, 范同祥. 蝶翅结构多孔二氧化钛的制备与光催化性能研究[J]. 山东大学学报(工学版), 2011, 41(1): 58-61. LIU Huihui, FAN Tongxiang. Enhanced light harvesting and photocatalytic property of TiO<sub>2</sub> architecture derived from butterfly wings[J]. Journal of Shandong University(Engineering Science), 2011, 41(1):58-61.
[16]  许效红,姚伟峰,张寅, 等. 钛酸铋系化合物的光催化性能研究[J]. 化学学报, 2005, 63(1):5-10. XU Xiaohong, YAO Weifeng, ZHANG Yin, et al. Photocatalytic properties of bismuth titanate compounds[J]. Acta Chimica Sinica, 2005, 63(1):5-10.
[17]  MURCIA-LóPEZ S, VILLA K, ANDREU T, et al. Partial oxidation of methane to methanol using bismuth-based photocatalysts[J]. ACS Catalysis, 2014, 4(9):3013-3019.
[18]  SUN S, WANG W. Advanced chemical compositions and nanoarchitectures of bismuth based complex oxides for solar photocatalytic application[J]. RSC Advances, 2014, 4:47136-47152.
[19]  GRINBERG I, WEST D V, TORRES M, et al. Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials[J]. Nature, 2013, 503: 509-512.
[20]  YIN H M, ZHOU A Q, CHANG N, et al. Characterization and photocatalytic activity of Bi<sub>3</sub>TiNbO<sub>9</sub> nanocrystallines synthesized by sol-gel process[J]. Materials Research Bulletin, 2009, 44(2): 377-380.
[21]  XI G, YE J. Synthesis of bismuth vanadate nanoplates with exposed {001} facets and enhanced visible-light photocatalytic properties[J]. Chemical Communications, 2010, 46(11): 1893-1895.
[22]  FUJISHIMA A, HONDA K. Electrochemical photolysis of water at a semiconductor electrode[J]. Nature, 1972, 238(5358):37-38.
[23]  HOFFMAN M R, MARTIN S T, CHOI W Y, et al. Environmental applications of semiconductor photocatalysis[J]. Chemical Reviews, 1995, 95(1):69-96.
[24]  徐青, 吕伟. TiO<sub>2</sub>/ZnO纳米光催化剂的制备及性能研究[J].山东大学学报(工学版),2010, 40(4): 72-74. XU Qing, LYU Wei. Preparation and properties of TiO<sub>2</sub>/ZnO photocatalyst[J].Journal of Shandong University(Engineering Science), 2010, 40(4): 72-74.
[25]  王文中, 尚萌, 尹文宗, 等. 含铋复合氧化物可见光催化材料研究进展[J].无 机 材 料 学 报, 2012, 27(1): 11-18. WANG Wenzhong, SHANG Meng, YIN Wenzong, et al. Recent progress on the bismuth containing complex oxide photocatalysts[J]. Journal of Inorganic Materials, 2012, 27(1):11-18.
[26]  XU N P, SHI Z F, FAN Y Q, et al. Effects of particle size of TiO<sub>2</sub> on photocatalytic degradation of methylene blue in aqueous suspensions[J]. Industrial & Engineering Chemistry Research, 1999, 38(2): 373-379.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133