全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

pH对Aβ42小纤维的结构影响
pH effect on the structure of Aβ42 fibrils

DOI: 10.6040/j.issn.1672-3961.0.2018.018

Keywords: 纤维生长,扭转角,Aβ42,小纤维,pH 影响,奇数端,
Aβ42
,pH effect,fibrils,twist angle,fibril growth,odd tip

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 为了从原子层面上理解pH对Aβ42小纤维结构的影响,采用分子动力学模拟方法,通过分析二级结构,每条链的β-sheet含量以及扭转角,研究pH 4.0~7.5范围内Aβ42三聚体和五聚体的结构以及性质变化。研究结果表明,在pH 4.0~7.5范围内,pH对三聚体和五聚体的二级结构没有明显的影响,但是对小纤维每条链的β-sheet的含量有影响;扭转角以及小纤维的生长都是由纤维的奇数端引发,回应了关于纤维生长机制的意见分歧。
Abstract: To find details at atomic level for the association between structure of Aβ42 fibrils and pH, molecular dynamic simulations were preformed to study the changes in structure and property of Aβ42 fibrils at pH 4.0~7.5, by analyzing secondary structures and contents of β-sheet per chain as well as twist angles. The results showed that pH caused little change in secondary structure of fibrils. However, difference existed in content of β-sheet per chain under different pHs. The changes of twist angles and growth of fibril were initiated by the odd tip, responding to the divergence in growth mechanism of fibril

References

[1]  CACCAMO A, ODDO S, SUGARMAN M C, et al. Age-and region-dependent alterations in Aβ-degrading enzymes: implications for Aβ-induced disorders[J]. Neurobiol of Aging, 2005, 26(5): 645-654.
[2]  SU Y, CHANG P T. Acidic pH promotes the formation of toxic fibrils from beta-amyloid peptide[J]. Brain Research, 2001, 893(1-2): 287-291.
[3]  GAL BITAN M D K, ALEKSEY LOMAKIN, SABRINA S V, et al. Amyloid β-protein(Aβ)assembly: Aβ40 and Aβ42 oligomerize through distinct pathways[J]. Proceedings of the National Academy of Sciences, 2003, 100(1): 330-335.
[4]  KLYUBIN I, WALSH D M, LEMERE C A, et al. Amyloid β protein immunotherapy neutralizes Aβ oligomers that disrupt synaptic plasticity in vivo[J]. Nature Medicine, 2005, 11(5): 556-561.
[5]  SCHWEIKER K L, ZARRINEAFSAR A, DAVIDSON A R, et al. Computational design of the Fyn SH3 domain with increased stability through optimization of surface charge charge interactions[J]. Protein Science, 2007, 16(12): 2694-2702.
[6]  PRINCE M, BRYCE R, ALBANESE E, et al. The global prevalence of dementia: a systematic review and metaanalysis[J]. Alzheimers & Dementia, 2013, 9(1):63-75.
[7]  运会喜. 阿尔茨海默病治疗药物研究进展[J]. 中国老年学杂志, 2017, 37(24): 6269-6272. YUN Huixi. Progress in the treatment of drugs for Alzheimers Disease[J]. Chinese Journal of Gerontology, 2017, 37(24):6269-6272.
[8]  陈庆华,张凤强,李立新, 等. 阿尔茨海默病发病机制和诊断技术研究进展[J]. 中华老年心脑血管病杂志, 2018, 20(1): 108-110. CHEN Qinghua, ZHANG Fengqiang, LI Lixin, et al. Advances in the pathogenesis and diagnostic techniques of Alzheimers disease[J]. Chinese Journal of Geriatric Heart Brain and Vessel Diseases, 2018, 20(1):108-110.
[9]  ANANDAKRISHNAN R, AGUILAR B, ONUFRIEV A V. H++3.0: automating pK prediction and the preparation of biomolecular structures for atomistic molecular modeling and simulations[J]. Nucleic Acids Research, 2012, 40(W1): W537-W541.
[10]  PAPARCONE R, BUEHLER M J. Microscale structural model of Alzheimer Aβ(1—40)amyloid fibril[J]. Applied Physics Letters, 2009, 94(24): 243904-243904-3.
[11]  ADRIEN M, XIAO D, NORMAND M, et al. Role of the region 23-28 in Aβ fibril formation: insights from simulations of the monomers and dimers of Alzheimers peptides Aβ40 and Aβ42[J]. Current Alzheimer Research, 2008, 5(3): 244-250.
[12]  YUN S, URBANC B, CRUZ L, et al. Role of electrostatic interactions in Amyloid β-protein(Aβ)oligomer formation: a discrete molecular dynamics study[J]. Biophysical, 2007, 92(11): 4064-4077.
[13]  TIPPING K W, KARAMANOS T K, JAKHRIA T, et al. pH-induced molecular shedding drives the formation of amyloid fibril-derived oligomers[J]. Proceedings of the National Academy of Sciences, 2015, 112(18): 5691-5696.
[14]  SHAMMAS S L, KNOWLES T P J, BALDWIN A J, et al. Perturbation of the stability of Amyloid fibrils through alteration of electrostatic interactions[J]. Biophysical Journal, 2011, 100(11): 2783-2791.
[15]  MILLER Y, MA B, TSAI C J, et al. Hollow core of Alzheimers Aβ42 Amyloid observed by cryoEM is relevant at physiological pH[J]. Proceedings of the National Academy of Sciences, 2010, 107(32): 14128-14133.
[16]  ZHAO J, WANG Q, LIANG G, et al. Molecular dynamics simulations of low-ordered Alzheimer β-Amyloid oligomers from dimer to hexamer on self-assembled monolayers[J]. Langmuir, 2011, 27(24): 14876-14887.
[17]  L HRS T, RITTER C, ADRIAN M, et al. 3D structure of Alzheimers Amyloid-β(1—42)fibrils[J]. Proceedings of the National Academy of Sciences, 2005, 102(48): 17342-17347.
[18]  CLEARY J P, WALSH D M, HOFMEISTER J J, et al. Natural oligomers of the Amyloid-β protein specifically disrupt cognitive function[J]. Nature Neuroscience, 2005, 8(1): 79-84.
[19]  DAVID V D S, LINDAHL E, HESS B, et al. GROMACS: fast, flexible, and free[J]. Journal of Computational Chemistry, 2005, 26(16): 1701-1718.
[20]  TREVINO S R, SCHAEFER S, SCHOLTZ J M, et al. Increasing protein conformational stability by optimizing β-turn sequence[J]. Journal of Molecular Biology, 2007, 373(1): 211-218.
[21]  HAN W, SCHULTEN K. Fibril elongation by Aβ(17-42): kinetic network analysis of hybrid-resolution molecular dynamics simulations[J]. Journal of the American Chemical Society, 2014, 136(35): 12450-12460.
[22]  DONG M, PAUL T J, HOFFMANN Z, et al. Structural and material properties of Amyloid Aβ40/42 fibrils[J]. ChemPhysChem, 2016, 17(16):2558-2566.
[23]  MASMAN M F, EISEL U L M, CSIZMADIA I G, et al. In silico study of full-length Amyloid β1-42 tri-and penta-oligomers in solution[J]. The Journal of Physical Chemistry B, 2009, 113(34): 11710-11719.
[24]  NGO S T, HUNG H M, TRUONG D T, et al. Replica exchange molecular dynamics study of the truncated amyloid beta(11-40)trimer in solution[J]. Physical Chemistry Chemical Physics, 2017, 19(3): 14876-14887.
[25]  HORNAK V, ABEL R, OKUR A, et al. Comparison of multiple Amber force fields and development of improved protein backbone parameters[J]. Proteins, 2006, 65(3): 712-725.
[26]  DARDEN T, YORK D, PEDERSEN L. Particle mesh Ewald: an N(·overs)log(N)method for Ewald sums in large systems[J]. The Journal of Chemical Physics, 1993, 98(12): 10089-10092.
[27]  UVERSKY V N, GILLESPIE J R, FINK A L. Why are "natively unfolded" proteins unstructured under physiologic conditions?[J]. Proteins, 2000, 41(3): 415-427.
[28]  GURRY T, STULTZ C M. Mechanism of Amyloid-β fibril elongation[J]. Biochemistry Journal, 2014, 53(44): 6981-6991.
[29]  HARDY J, SELKOE D J. The Amyloid hypothesis of Alzheimer's disease: progress and problems on the road to therapeutics[J]. Science, 2002, 297(5580): 353-356.
[30]  PETTERSEN E F, GODDARD T D, HUANG C C, et al. UCSF Chimera: a visualization system for exploratory research and analysis[J]. Journal of Computational Chemistry, 2004, 25(13): 1605-1612.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133