全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于改进EMD和数据分箱的轴承内圈故障特征提取方法
Feature extraction method of rolling bearing inner ring in wind turbine based on improved EMD and feature box

DOI: 10.6040/j.issn.1672-3961.0.2016.270

Keywords: 改进经验模态分解,数据分箱,特征提取,故障诊断,代价敏感问题,滚动轴承内圈,
data sub box
,bearing inner ring,feature extraction,fault diagnosis,improved EMD,cost sensitive

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 为解决直驱风力发电机主轴后轴承内圈轻微损伤故障诊断问题,针对实际工程中振动信号的复杂特性,提出一种基于改进经验模态分解(empirical mode decomposition, EMD)和数据分箱的特征提取算法。将信号进行改进经验模态分解,得到一系列平稳的本征模函数(intrinsic mode function, IMF)。对分解后的信号提取均值、方差等幅域参数特征,并根据参数有效性选择部分参数组成特征矩阵。选用等宽分箱方法,用箱内数据均值代替箱体数据,将特征矩阵进行平滑处理。经验证,该方法能准确提取实际工程信号中的有效特征,并从特征选择的角度较好解决了分类器代价敏感问题,减少了机器学习模型的过拟合现象。
Abstract: According to the characteristics of vibration signal of rolling bearing inner ring in direct-driven wind turbine, a new method of fault diagnosis by improved empirical mode decomposition(EMD)and feature box was put forward. The original signal was decomposed by improved EMD to get a finite number of stationary intrinsic mode functions(IMFs). The characteristics of amplitude domain parameters such as mean and variance were extracted, which were turned into feature matrix chose by effectiveness. To perform data smoothing processing, The feature matrix was divided into boxes and replaced by means of data in each box. Examples showed that the feature matrix, which was divided into boxes finally, could effectively extract the fault feature of rolling bearing, and reduce the over fitting of the machine learning model

References

[1]  冯辅周,司爱威,饶国强,等.基于小波相关排列熵的轴承早期故障诊断技术[J]. 机械工程学报,2012,48(13):73-79. FENG Fuzhou,SI Aiwei, RAO Guoqiang, et al. Early fault diagnosis technology for bearing based on wavelet correlation permutation entropy[J]. Journal of Mechanical Engineering, 2012, 48(13):73-79.
[2]  刘金福, 于达仁, 胡清华, 等. 基于加权粗糙集的代价敏感故障诊断方法[J]. 中国电机工程学报, 2007, 27(23):93-99. LIU Jinfu, YU Daren, HU Qinghua, et al. Cost-sensitive fault diagnosis based on weighted rough sets[J]. Proceedings of the CSEE, 2007, 27(23):93-99.
[3]  苏连成,李兴林. 中国北方地区风电轴承故障调查与分析[J].轴承,2013(11):59-62. SU Lianchen, LI Xinglin. Investigation and analysis of fault for wind turbine bearings in northern China[J]. Bearing, 2013(11):59-62.
[4]  HUANG D J, ZHAO J P, SUN J L. Practical implementation of Hilbert-Huang transform algorithm[J]. Acta Oceanologica Sinica, 2003, 22(1):1-14.
[5]  李航. 统计学习方法[M]. 北京:清华大学出版社, 2012:18-20.
[6]  付忠良. 多分类问题代价敏感AdaBoost算法[J].自动化学报, 2011, 37(8):973-983. FU Zhongliang. Cost-sensitive AdaBoost algorithm for multi-class classification problems[J]. Acta Automatica Sinica, 2011, 37(8):973-983.
[7]  傅涛,孙文静,孙亚民. 基于分箱统计的FCM算法及其在网络入侵检测中的应用[J]. 计算机科学,2008,35(4):36-39. FU Tao, SUN Wenjing, SUN Yamin. Algorithm based on box-FCM statistics and its application in network intrusion detection[J].Computer Science, 2008, 35(4):36-39.
[8]  苏文胜,王奉涛,张志新,等.EMD降噪和谱峭度法在滚动轴承早期故障诊断中的应用[J]. 振动与冲击,2010,29(3):18-21. SU Wensheng, WANG Fengtao, ZHANG Zhixin, et al. The application of EMD and spectral kurtosis method in the early fault diagnosis of rolling bearing[J]. Journal of Vibration and Shock, 2010, 29(3):18-21.
[9]  胡爱军,马万里,唐贵基. 基于集成经验模态分解和峭度准则的滚动轴承故障特征提取方法[J]. 中国电机工程学报,2012, 32(11):106-111. HU Aijun, MA Wanli, TANG Guiji. Rolling bearing fault feature extraction method based on ensemble empirical mode decomposition and Kurtosis criterion[J].Proceedings of the CSEE, 2012, 32(11):106-111.
[10]  蒋东翔,洪良友,黄乾,等. 风力机状态监测与故障诊断技术研究[J].电网与清洁能源,2008,24(3):40-44. JIANG Dongxiang, HONG Liangyou, HUANG Qian, et al. Condition monitoring and fault diagnostic techniques for wind turbine[J].Power System and Clean Energy, 2008, 24(3):40-44.
[11]  WALFORD A. Christopher.Wind turbine reliability:understanding and minimizing wind turbine operation and maintenance costs[R].California, USA: Sandia Corporation, 2006.
[12]  吴娜,孙丽玲,杨普. 风力机状态监测与故障诊断技术研究[J].华北水利水电学院学报,2012,33(2):86-90. WU Na, SUN Liling, YANG Pu. Research on wind turbine condition monitoring and fault diagnosis[J].Journal of North China Institute of Water Conservancy and Hydroelectric Power, 2012, 33(2):86-90.
[13]  周福昌,陈进,何俊, 等. 循环平稳信号处理在机械设备故障诊断中的应用综述[J].振动与冲击, 2006, 25(5):148-152. ZHOU Fuchang, CHEN Jin, HE Jun, et al. Survey of the application of cyclostationary signal processing in machinery fault diagnosis[J].Journal of Vibration and Shock, 2006, 25(5):148-152.
[14]  于德介,陈淼峰,程军圣,等.一种基于经验模式分解与支持向量机的转子故障诊断方法[J]. 中国电机工程学报,2006,26(16):162-167. YU Dejie, CHEN Miaofeng, CHENG Junsheng, et al. A fault diagnosis approach for rotor systems based on empirical mode decomposition method and support vector machines[J]. Proceedings of the CSEE, 2006, 26(16):162-167.
[15]  张周锁,李凌均,何正嘉. 基于支持向量机的机械故障诊断方法研究[J]. 西安交通大学学报,2002,36(12):1303-1306. ZHANG Zhousuo, LI Lingun, HE Zhengjia. Research on diagnosis method of machinery fault based on support vector machine[J].Journal of Xi'an Jiaotong University, 2002, 36(12):1303-1306.
[16]  袁朝庆, 赵丹,余亚辉. 基于经验模态分解法和时域幅值参数识别结构损伤程度[J]. 无损检测,2008, 30(2):84-86. YUAN Zhaoqing, ZHAO Dan, YU Yahui. Identifying the damage degree of structure based on empirical mode decomposition and parameters in time domain amplitude[J]. Nondestructive Testing, 2008, 30(2):84-86.
[17]  张学工. 关于统计学习理论与支持向量机[J]. 自动化学报,2000, 26(1):32-42. ZHANG Xuegong. Introduction to statistical learning theory and support vector machines[J]. Acta Automatica Sinica, 2000, 26(1):32-42.
[18]  赵志宏,杨绍普.基于小波包变换与样本熵的滚动轴承故障诊断[J].振动、测试与诊断,2012,32(4):640-644. ZHAO Zhihong, YANG Shaopu. Roller bearing fault diagnosis based on wavelet packet transform and sample entropy[J]. Journal of Vibration, Measurement & Diagnosis, 2012, 32(4):640-644.
[19]  张超,陈建军,徐亚兰.基于EMD分解和奇异值差分谱理论的轴承故障诊断方法[J]. 振动工程学报,2011,24(5):539-545. ZHANG Chao, CHEN Jianjun, XU Yalan. A bearing fault diagnosis method based on EMD and difference spectrum theory of singular value[J]. Journal of Vibration Engineering, 2011, 24(5):539-545.
[20]  HUANG N E, SHEN Z, LONG S R, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non-stationary time series analysis[J]. Proceedings of the Royal Society A, 1998, 454(1971):903-995.
[21]  韩家炜, MICHELINE Kamber. 数据挖掘:概念与技术[M]. 范明, 译. 北京:机械工业出版社, 2001:70-71.
[22]  王洁松, 张小飞. 基于特征匹配和分箱技术的FCM算法研究[J]. 南通航运职业技术学院学报, 2011, 10(3):56-59. WANG Jiesong, ZHANG Xiaofei. AFCM algorithm based on character mMatching and bBinning[J]. Journal of Nantong Vocational & Technical Shipping College, 2011, 10(3):56-59.
[23]  张明锦,王明伟. 基于数据分箱的CARS方法用于基因表达谱的特征筛选[J]. 计算机与应用化学,2015,32(8):1004-1006. ZHANG Mingjin, WANG Mingwei. Use of binning-based CARS method for feature selection from gene expression data[J].Computers and Applied Chemistry, 2015, 32(8):1004-1006.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133