全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于六维前馈神经网络模型的图像增强算法
Image enhancement algorithm based on six dimensional feedforward neural network model

DOI: 10.6040/j.issn.1672-3961.0.2018.063

Keywords: 神经网络,动力系统,图像处理,图像增强,六维前馈神经网络模型,
image enhancement
,neural network,six dimensional feed-forward neural network model,dynamic system,image processing

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 针对滤波去噪对边缘造成的弱化、部分采集图像不清晰以及对比度低的问题,在充分分析模型的动力学性质的基础上,提出一种基于六维前馈神经网络模型的图像增强算法。试验表明:基于六维前馈神经网络模型的图像增强算法可以更好地达到图像增强效果。与其它几种增强算法相比,增强效果清晰,且算法更优。
Abstract: Aiming at the problems of weakening the edges caused by filtering denoising, partially indistinct images and low contrast, an image enhancement algorithm based on the six dimension feedforward neural network model was proposed on the basis of fully analyzing the dynamic properties of the model. The experiment showed that the image enhancement algorithm based on the six dimensional feedforward neural network model could better achieve a very good enhancement effect. Compared with other enhancement algorithms, the enhancement effect was clearer and the algorithm was better

References

[1]  PAYAL A, RAI C S, REDDY B V R. Analysis of some feedforward artificial neural network training algorithms for developing localization framework in wireless sensor networks[J]. Wireless Personal Communications, 2014, 82(4):1-18.
[2]  MASULLI P, VILLAA E P. Dynamics of evolving feed-forward neural networks and their topological invariants[M]. Barcelona, Spain: Springer International Publishing, 2016: 25-46.
[3]  王哲远,李元祥,郁文贤.SAR图像质量评价综述[J].遥感信息, 2016, 31(5):1-10. WANG Zheyuan, LI Yuanxiang, YU Wenxian. SAR image quality assessment overview[J]. Remote Sensing Information, 2016, 31(5):1-10.
[4]  王志明. 无参考图像质量评价综述[J].自动化学报, 2015, 41(6):1062-1079. WANG Zhiming. Overview of no reference image quality assessment[J]. Automation Journal, 2015, 41(6): 1062-1079.
[5]  李俊峰.基于RGB色彩空间自然场景统计的无参考图像质量评价[J].自动化学报,2015, 41(9):1601-1615. LI Junfeng. No reference image quality assessment based on RGB color space natural scene statistics[J]. Automation Journal, 2015, 41(9):1601-1615.
[6]  SONG Y, WEI J. Local hopf bifurcation and global periodic solutions in a delayed predator-prey system[J]. Journal of Mathematical Analysis & Applications, 2005, 301(1):1-21.
[7]  LI L, YUAN Y. Dynamics in three cells with multiple time delays[J]. Nonlinear Analysis Real World Applications, 2008, 9(3):725-746.
[8]  PAN Y, YU H. Biomimetic hybrid feedback feedforward neural-network learning control[J]. IEEE Transactions on Neural Networks & Learning Systems, 2017(99):1-7.
[9]  HU J Y, ZHANG J S, ZHANG C X, et al. A new deep neural network based on a stack of single-hidden-layer feedforward neural networks with randomly fixed hidden neurons[J]. Neurocomputing, 2016, 171(C):63-72.
[10]  WANG H, JIANG W. Hopf-pitchfork bifurcation in van der pol's oscillator with nonlinear delayed feedback[J]. Journal of Mathematical Analysis & Applications, 2010, 368(1):9-18.
[11]  RUANS G, FILFIL R S. Dynamics of a two-neuron system with discrete and distributed delays[J]. Physica D Nonlinear Phenomena, 2004, 191(3-4):323-342.
[12]  MCCULLENN J, MULLIN T, GOLUBITSKY M. Sensitive signal detection using a feed-forward oscillator network[J]. Physical Review Letters, 2007, 98(25): 254101.
[13]  褚江,陈强,杨曦晨.全参考图像质量评价综述[J].计算机应用研究,2014, 31(1):13-22. CHU Jiang, CHEN Qiang, YANG Xichen. A review of all reference image quality evaluation[J]. Computer Application Research, 2014, 31(1):13-22.
[14]  COHENM A, GROSSBERG S. Absolute stability of global pattern formation and parallel memory storage by competitive neural networks[J]. IEEE Transactions on Systems Man & Cybernetics, 1983, 13(5):815-826.
[15]  JIANGW, NIU B. On the coexistence of periodic or quasi-periodic oscillations near a hopf-pitchfork bifurcation in NFDE[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(3):464-477.
[16]  WANG H, WANG J. Hopf-pitchfork bifurcation in a two-neuron system with discrete and distributed delays[J]. Mathematical Methods in the Applied Sciences, 2015, 38(18): 4967-4981.
[17]  WANG P, LU J H, ZHANG Y H. Global relative input-output sensitivities of the feed-forward loops in genetic networks[J]. Neurocomputing, 2012, 78(1):155-165.
[18]  HOPFIELDJ J. Neurons with graded response have collective computational properties like those of two-state neurons[J]. Proceedings of the National Academy of Sciences of the United States of America, 1984, 81(10):3088-92.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133