全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

基于反向解耦的PWM整流器分数阶内模控制
Fractional internal model control of PWM rectifier based on inverted decoupling

DOI: 10.6040/j.issn.1672-3961.0.2017.441

Keywords: PWM整流器,内模控制,最大灵敏度,分数阶控制,反向解耦,
PWM rectifier
,inverted decoupling,internal model control,fractional order control,maximum sensitivity

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 针对三相电压型PWM整流器提出一种新型的双闭环控制策略。基于同步旋转坐标系下PWM整流器的数学模型,利用反向解耦方法实现电流环的完全解耦,且避免了复杂的矩阵求逆运算;根据内模控制(internal model control, IMC)原理,设计了电流环IMC-PI控制器,该控制器仅有一个可调参数;在电压外环控制器的设计中,将IMC与分数阶控制(fractional order control, FOC)相结合,给出一种分数阶内模控制器的设计方法,并利用系统截止频率和最大灵敏度指标,实现了控制器参数的鲁棒整定。仿真结果表明,所提方法可使系统具有更好的动态响应及抗扰性能。
Abstract: A novel double closed loop control strategy was proposed for three-phase voltage source PWM rectifier. Based on the mathematical model of PWM rectifier in synchronous rotating coordinate system, the inverted decoupling method was used to realize the complete decoupling of the current loop, and the complicated matrix inversion operation was avoided. According to the principle of internal model control(IMC), the IMC-PI controllers were designed with only one tunable parameter in the inner loop. In the voltage outer loop, a fractional order IMC controller was designed by combining IMC with fractional order control(FOC)method, and the controller parameters were obtained by the cut-off frequency and maximum sensitivity index of the system. The simulation results showed that the proposed method could provide better dynamic performance and disturbance rejection property

References

[1]  汪万伟, 尹华杰, 管霖. 双闭环矢量控制的电压型PWM整流器参数整定[J]. 电工技术学报, 2010, 25(2): 67-79. WANG Wanwei, YIN Huajie, GUAN Lin. Parameter setting for double closed-loop vector control of voltage source PWM rectifier[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 67-79.
[2]  PODLUBNY I. Fractional-order systems and PI<sup><i></i></sup><i>λ</i>D<sup><i></i></sup><i>μ</i> controllers[J]. IEEE Transaction on Automatic Control, 1999, 44(1): 208-214.
[3]  赵春娜, 赵雨, 张祥德, 等. 分数阶控制器与整数阶控制器仿真研究[J]. 系统仿真学报, 2009, 21(3): 768-775. ZHAO Chunna, ZHAO Yu, ZHANG Xiangde, et al. Simulation research on fractional order controllers with integer order controllers[J]. Journal of System Simulation, 2009, 21(3): 768-775.
[4]  梁祖权, 束洪春. 新型UPQC直流电压的PI<sup><i></i></sup><i>λ</i>D<sup><i></i></sup><i>μ</i>控制[J]. 电工技术学报, 2010, 25(2): 147-151. LIANG Zuquan, SHU Hongchun. Novel UPQC DC voltage research of PI<sup><i></i></sup><i>λ</i>D<sup><i></i></sup><i>μ</i> controller[J]. Transactions of China Electrotechnical Society, 2010, 25(2): 147-151.
[5]  李志民, 孙其振, 孙勇, 等. PMSG风力发电系统最大风能追踪的分数阶控制[J]. 电力系统及其自动化学报, 2012, 24(6):67-72. LI Zhimin, SUN Qizhen, SUN Yong, et al. Maximum energy tracking of PMSG wind power generation system by fractional-order control[J]. Proceedings of the CSU-EPSA, 2012, 24(6): 67-72.
[6]  王璇, 张小凤, 周丰, 等. 三相电压型PWM整流器分数阶PID直接功率控制[J]. 电气传动, 2013, 43(4): 45-49. WANG Xuan, ZHANG Xiaofeng, ZHOU Feng, et al. Direct power control based on fractional-order PID controller of three-phase voltage source PWM rectifier[J]. Electric Drive, 2013, 43(4): 45-49.
[7]  BETTAYEB M, MANSOURI R. IMC-PID-fractional-order-filter controllers design for integer order systems[J]. ISA Transactions, 2014, 53(5): 1620-1628.
[8]  BETTAYEB M, MANSOURI R. Fractional IMC-PID-filter controllers design for non integer order systems[J]. Journal of Process Control, 2014, 24(4): 261-271.
[9]  赵志涛, 赵志诚, 张井岗. 直流位置伺服系统的二自由度分数阶控制[J]. 信息与控制, 2016, 45(4): 421-425. ZHAO Zhitao, ZHAO Zhicheng, ZHANG Jinggang. Two-degrees-of-freedom fractional control method for DC position servo system[J]. Information and Control, 2016, 45(4): 421-425.
[10]  GARRIDO J, VáZQUEZ F, MORILLA F. An extended approach of inverted decoupling[J]. Journal of Process Control, 2011, 21(1):55-68.
[11]  SUN L, DONG J, LI D, et al. A practical multivariable control approach based on inverted decoupling and decentralized active disturbance rejection control[J]. Industrial & Engineering Chemistry Research, 2016, 55(7): 847-866.
[12]  GARRIDO J, VáZQUEZ F, MORILLA F, et al. Practical advantages of inverted decoupling[J]. Proceedings of the Institution of Mechanical Engineers Part I: Journal of Systems & Control Engineering, 2011, 225(7):977-992.
[13]  邹学渊, 王京, 张勇军, 等. 基于内模控制的改进型三相PWM整流器 [J].电子技术应用, 2009, 35(8): 76-78. ZOU Xueyuan, WANG Jing, ZHANG Yongjun, et al. Improved three-phase PWM rectifier based on IMC[J]. Application of Electronic Technique, 2009, 35(8): 76-78.
[14]  李晶, 姜久春, 牛利勇, 等. 电动汽车充电机输入阻抗特性分析[J]. 北京交通大学学报, 2013, 37(2): 79-84. LI Jing, JIANG Jiuchun, NIU Liyong, et al. Analysis of electric vehicle charger input impedance[J]. Journal of Beijing Jiaotong University, 2013, 37(2): 79-84.
[15]  程启明, 程尹曼, 薛阳, 等. 三相电压源型PWM整流器控制方法的发展综述[J]. 电力系统保护与控制, 2012, 40(3):145-155. CHENG Qiming, CHENG Yinman, XUE Yang, et al. A summary of current control methods for three-phase voltage-source PWM rectifiers[J]. Power System Protection and Control, 2012, 40(3):145-155.
[16]  王长恺, 尹华杰. 三相电压型PWM整流器的系统设计与PI参数校正[J]. 电气传动, 2011, 41(3): 41-45. WANG Changkai, YIN Huajie. System design and PI parameter calibration of three-phase voltage source PWM rectifier[J]. Electric Drive, 2011, 41(3): 41-45.
[17]  唐勇奇, 赵葵银, 汪超. 基于滑模变结构控制的三相PWM 整流器[J]. 电力自动化设备, 2006, 26(5): 39-41. TANG Yongqi, ZHAO Kuiyin, WANG Chao. Three-phase PWM rectifier based on sliding-mode variable structure control[J]. Electric Power Automation Equipment, 2006, 26(5): 39-41.
[18]  丁祖军, 刘保连, 倪伟. PWM 整流器中优化变结构控制策略的设计[J]. 电力自动化设备, 2012, 32(1): 76-79. DING Zujun, LIU Baolian, NI Wei. Design of improved variable structure control for PWM rectifier [J]. Electric Power Automation Equipment, 2012, 32(1): 76-79.
[19]  宋文祥, 尹赟. 一种基于内模控制的三相电压型PWM整流器控制方法[J]. 电工技术学报, 2012, 27(12): 94-101. SONG Wenxiang, YIN Yun. A control strategy of three-phase PWM rectifier based on internal model control[J]. Transactions of China Electrotechnical Society, 2012, 27(12): 94-101.
[20]  赵志涛, 赵志诚, 王惠芳. 直流调速系统模糊自整定分数阶内模控制[J]. 山东大学学报(工学版), 2015, 45(5): 58-62. ZHAO Zhitao, ZHAO Zhicheng, WANG Huifang. Fractional order internal model control with fuzzy-tuning for DC speed regulating system[J]. Journal of Shandong University(Engineering Science), 2015, 45(5): 58-62.
[21]  LI D, LIU L, JIN Q, et al. Maximum sensitivity based fractional IMC-PID controller design for non-integer order system with time delay[J]. Journal of Process Control, 2015, 31(7): 17-29.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133