全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

压痕对不锈钢材料表面残余应力的影响
The influence of indentation on the surface residual stress of stainless steel

DOI: 10.6040/j.issn.1672-3961.0.2016.081

Keywords: 材料力学性能,有限元,自动球压痕,残余应力,应力集中,
automated ball indentation
,mechanical properties of materials,finite element,residual stress,stress concentration

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 为研究自动球压痕过程残留压痕残余应力分布情况,以压力容器常用的奥氏体不锈钢板材S30408、S32168、 S31603 和 S30403为对象,通过常规拉伸试验获得材料的本构关系及自动球压痕试验获得压痕过程的载荷-位移曲线,采用有限元软件ABAQUS进行模拟。试验结果表明:压头卸载后,压痕凹坑底部材料承受的残余压应力达到最大,Mises应力状态下最大残余应力约为700 MPa左右,压痕残余应力影响范围在受压面上大约占球形压头半径的1.3%。同时,对材料施加一定大小的外载荷拉应力,研究残余应力和外载荷共同作用下压痕周围材料的应力分布状况,结果显示最大叠加应力出现在压痕材料堆积区域,但是应力影响区域很小,影响深度为所受影响平面半径的6%以内。
Abstract: In order to obtain the residual stress distribution around the residual indentation, the austenitic stainless steel sheets of S30408, S32168, S31603 and S30403 were chosen as the research materials. The constitutive relations of the materials were acquired by the tensile tests, and the force-depth curves were obtained by the ABI tests. The ABI process was simulated by finite element software ABAQUS; The results showed that the maximum value of the residual stress under Mises stress state is about 700 MPa, and the residual stress exists within the area of 1.3% of the ball radius. In addition, the stress concentration around the indentation under the action of external tensile load was studied. The results showed that the maximum superposition stress appears in the indentation materials accumulating area, and the influence range in the thickness direction was limited within 6% of the influence radius

References

[1]  HAGGAG F M. In-service nondestructive measurements of stress-strain curves and fracture toughness of oil and gas pipelines: examples of fitness-for-purpose applications[C] // Proceedings of the 5th International Conference on Pipeline Rehabilitation & Maintenance, Bahrain: Det Norske Veritas, 2002.
[2]  TABOR D. The hardness of solids[J]. Review of Physics in Technology, 1970, 1(3):145-179.
[3]  中华人民共和国国家质量监督检验检疫总局. 金属材料拉伸试验第1部分:室温试验方法 GB/T 228.1—2010[S]. 北京:中国标准出版社,2011.
[4]  杨伯源, 张义同. 工程弹塑性力学[M]. 北京: 机械工业出版社, 2003:192.
[5]  石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2010:167.
[6]  苏成功.不锈钢性能测试的自动球压痕试验法研究[D]. 济南:山东大学,2015. SU Chenggong. Research on the evaluation of stainless steel properties by automated indentation testing method[D]. Jinan: Shandong University, 2015.
[7]  航空工业部科学技术委员会.应力集中系数手册[M]. 北京:高等教育出版社,1990:154.
[8]  HAGGAG F M. Field indentation microprobe for structural integrity evaluation: USA, 4,852,397[P]. 1989-08-01.
[9]  HAGGAG F M. Indentation technique provides pipeline integrity monitoring[J]. Oil & Gas Journal, 2006, 104(30):58-62.
[10]  YANG F, LI J C M. Impression test—a review[J]. Materials Science and Engineering, 2013, 74(8):233-253.
[11]  中华人民共和国国家质量技术监督局. 钢及钢产品力学性能试验取样位置及试样制备 GB/T 2975—1998[S]. 北京:中国标准出版社,1998.
[12]  MEYER E. Contribution to the knowledge of hardness and hardness testing[J]. Zeitschrift Des Vereines Deutscher Ingenieure, 1908, 52:740-835.
[13]  HAGGAG F M, NANSTAD R K, BRASKI D N. Structural integrity evaluation based on an innovative field indentation microprobe[C] // ASME Pressure Vessel and Piping Conference. Honolulu, USA:[s.n.] , 1989.
[14]  HARSHI K K, KAMAL S, RAHUL C. Mechanical property estimation of similar weld using ball indentation technique[J]. Journal of Minerals and Materials Characterization and Engineering, 2012, 11(11):1095-1100.
[15]  JIA Y F, XUAN F Z. Anisotropic fatigue behavior of human enamel characterized by multi-cycling nanoindentation[J]. Journal of the Mechanical Behavior of Biomedical Materials, 2012, 16(16):163-168.
[16]  汤杰, 王威强, 苏成功, 等.连续球压痕法测试压力容器用钢力学性能的研究[J].振动、测试与诊断,2015,35(2):281-288. TANG Jie, WANG Weiqiang, SU Chenggong, et al. Research on the measurement of mechanical properties of pressure vessel steels through continuous ball indentation test[J]. Journal of Vibration, Measurement and Diagnosis, 2015, 35(2):281-288.
[17]  HERTZ H. über die berührung fester elastischer k?rper[J]. Reine and Angewandte Mathematik, 1882, 1882(92):156-171.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133