全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

计及空间关联冗余的节点负荷预测方法
Nodal load forecasting method considering spatial correlation and redundancy

DOI: 10.6040/j.issn.1672-3961.0.2017.530

Keywords: 节点负荷预测,冗余信息,状态估计,空间关联,支持向量机,
support vector machine
,redundant information,spatial correlation,state estimation,nodal load forecasting

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 针对现有节点负荷预测方法对节点空间关联信息没有有效利用的问题,提出计及空间关联冗余的带有估计校正特性的节点负荷预测方法。分析量测信息在时间维度和空间维度上的关联关系,以及二者有机结合的空间关联、冗余的特性,给出二者相互校正的预测原理。对状态量和量测值之间的两种空间关联关系进行深入分析,充分寻求在空间关联拓扑上能间接表征状态量特征的多组量测值方程。依据分析结果建立计及空间关联冗余的预测模型,给出以支持向量机为前期预测模型的预测方法,并对预测方法的优点进行分析。试验结果表明:考虑空间关联冗余的节点负荷预测方法相对于支持向量机模型预测误差明显降低,有利于改善预测结果。
Abstract: Aiming at the problem that existing nodal load forecasting methods had no effective use for the nodes spatial correlation information, a new nodal load forecasting method with estimated correction characteristic was proposed, which had considered spatial correlation and redundancy. The correlation between the time dimension and the spatial dimension of the measurement information, and the spatial correlation and redundancy characteristics which combined these two dimensions were analyzed, and the mutual correction prediction principle was given. Two spatial correlations between state and measured values were analyzed deeply to establish measuring equations, which could characterise state features indirectly on the spatial correlation topology. Based on the analysis results, the forecasting model was established, and the forecasting method in which pre-prediction model was support vector machine was given, and advantages of the forecasting method were elaborated. Case studies demonstrated that compared with SVM model, the proposed 山 东 大 学 学 报 (工 学 版)第47卷 - 第6期韩学山,等:计及空间关联冗余的节点负荷预测方法 \=-method could effectively decrease forecasting errors and improve forecasting results

References

[1]  叶瑰昀, 罗耀华, 刘勇, 等. 基于ARMA模型的电力系统负荷预测方法研究[J]. 信息技术, 2002(6):74-76. YE Guiyun, LUO Yaohua, LIU Yong, et al. Research on method of power system load forecasting based on ARMA model[J]. Information Technology, 2002(6):74-76.
[2]  ABU-EL-MAGD M A, SINIIA N K. Two new algorithms for on-line modelling and forecasting of the load demand of a multinode power system[J]. IEEE Transactions on Power Apparatus and Systems, 1981, 100(7):3246-3253.
[3]  牟涛, 康重庆, 夏清, 等. 电力系统多级负荷预测及其协调问题:(三)关联协调模型[J]. 电力系统自动化,2008, 32(9):20-24. MU Tao, KANG Chongqing, XIA Qing, et al. Power system multilevel load forecasting and coordinating: Part three correlative coordinating model[J]. Automation of Electric Power Systems, 2008, 32(9):20-24.
[4]  张林, 刘先珊, 阴和俊. 基于时间序列的支持向量机在负荷预测中的应用[J]. 电网技术, 2004, 28(19):38-41. ZHANG Lin, LIU Xianshan, YIN Hejun. Application of support vector machines based on time sequence in power system load forecasting[J]. Power System Technology, 2004, 28(10):38-41.
[5]  刘振亚. 全球能源互联网[M]. 北京:中国电力出版社, 2015.
[6]  田世明, 栾文鹏, 张东霞, 等. 能源互联网技术形态与关键技术[J]. 中国电机工程学报, 2015, 35(14):3482-3494. TIAN Shiming, LUAN Wenpeng, ZHANG Dongxia, et al. Technical forms and key technologies on energy internet[J]. Proceedings of the CSEE, 2015, 35(14):3482-3494.
[7]  ABU-EL-MAGD M A, SINIIA N K. Univariate and multivariate time series techniques for modeling and forecasting short-term load demand[C] // IFAC Symposium on Theory and Application of Digital Control. New Delhi, India: IFAC Press, 1982: 329-334.
[8]  韩力, 韩学山, 贠志皓, 等. 多节点超短期负荷预测方法[J]. 电力系统自动化, 2007, 31(21):30-34. HAN Li, HAN Xueshan, YUN Zhihao, et al. Method for ultra-short term multi-node load forecasting[J]. Automation of Electric Power Systems, 2007, 31(21):30-34.
[9]  康重庆, 夏清, 刘梅. 电力系统负荷预测[M]. 北京:中国电力出版社,2007.
[10]  李明干, 孙健利, 刘沛. 基于卡尔曼滤波的电力系统短期负荷预测[J]. 继电器, 2006, 32(4):9-12. LI Minggan, SUN Jianli, LIU Pei. Short-term load forecast of power system based on Kalman filter[J]. Relay, 2006, 32(4):9-12.
[11]  潘志远, 韩学山. 电网节点负荷的立体化预测方法[J]. 电力系统自动化, 2012, 36(21):47-52. PAN Zhiyuan, HAN Xueshan. A multi-dimensional method of nodal load forecasting in power grid[J]. Automation of Electric Power Systems, 2012, 36(21):47-52.
[12]  李元诚, 方廷健, 于尔铿. 短期负荷预测的支持向量机方法研究[J]. 中国电机工程学报, 2003, 23(6):55-59. LI Yuancheng, FANG Tingjian,YU Erkeng. Study of support vector machines for short-term load forecasting[J]. Proceedings of the CSEE, 2003, 23(6):55-59.
[13]  朱六璋, 袁林, 黄太贵. 短期负荷预测的实用数据挖掘模型[J]. 电力系统自动化, 2004, 28(3):49-52. ZHU Liuzhang, YUAN Lin, HUANG Taigui. Applied data mining models for short-term load forecasting[J]. Automation of Electric Power Systems, 2004, 28(3):49-52.
[14]  牛东晓, 谷志红, 邢棉, 等. 基于数据挖掘的SVM短期负荷预测方法研究[J]. 中国电机工程学报, 2006, 26(18):6-12. NIU Dongxiao, GU Zhihong, XING Mian, et al. Study on forecasting approach to short-term load of SVM based on data mining[J]. Proceedings of the CSEE, 2006, 26(18):6-12.
[15]  薛禹胜, 陈宁, 王树民, 等. 关于利用空间相关性预测风速的评述[J]. 电力系统自动化, 2017, 41(10):161-169. XUE Yusheng, CHEN Ning, WANG Shumin, et al. Review on wind speed prediction based on spatial correlation[J]. Automation of Electric Power Systems, 2017, 41(10):161-169.
[16]  王蓓蓓, 李义荣, 李扬, 等. 考虑响应不确定性的可中断负荷参与系统备用配置的协调优化[J]. 电力自动化设备,2015, 35(11):82-89. WANG Beibei, LI Yirong, LI Yang, et al. Optimal coordination between system reserve and interruptible loads with response uncertainty[J]. Electric Power Automation Equipment, 2015, 35(11):82-89.
[17]  赵俊华, 文福拴, 薛禹胜, 等. 计及电动汽车和风电出力不确定性的随机经济调度[J]. 电力系统自动化, 2010, 34(20):22-29. ZHAO Junhua, WEN Fushuan, XUE Yusheng, et al. Power system stochastic economic dispatch considering uncertain outputs from plug-in electric vehicles and wind generators[J]. Automation of Electric Power Systems, 2010, 34(20):23-29.
[18]  薛禹胜, 雷兴, 薛峰, 等. 关于风电不确定性对电力系统影响的评述[J]. 中国电机工程学报, 2014, 34(29):5029-5040. XUE Yusheng, LEI Xing, XUE Feng, et al. A review on impacts of wind power uncertainties on power systems[J]. Proceedings of the CSEE, 2014, 34(29):5029-5040.
[19]  DANESIIDOOST M, LOTFALIAN M, BUMROONGGIT G, et al. Neural network with fuzzy set-based classification for short-term load forecasting[J]. IEEE Transactions on Power Systems, 1998, 13(4):1386-1391.
[20]  周佃民, 管晓宏, 孙婕, 等. 基于神经网络的电力系统短期负荷预测研究[J]. 电网技术, 2002, 26(2):10-13. ZHOU Dianmin, GUAN Xiaohong, SUN Jie, et al. A short-term load forecasting system based on BP artificial neural network[J]. Power System Technology, 2002, 26(2):10-13.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133