全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

分数阶情绪模型的终端滑模控制混沌同步
Terminal sliding model control chaos synchronization of fractional-order emotion mode systems

DOI: 10.6040/j.issn.1672-3961.0.2016.342

Keywords: 分数阶,情绪模型,滑模,混沌同步,
fractional-order
,emotion model,sliding model,chaos synchronization

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 应用驱动-响应同步方法,研究一类分数阶情绪模型的终端滑模混沌同步问题。基于Lyapunov稳定性理论和分数阶微积分的相关知识,构造一种非奇异的终端滑模面,通过设计连续的终端滑模控制器,给出主从系统在有限时间内快速实现混沌同步的设计方案。理论分析和仿真计算结果证明了这种控制方法的有效性。
Abstract: The problem of terminal sliding model synchronization of fractional-order emotion mode systems was studied based on drive-response approach. Based on Lyapunov stability theory and fractional-order calculus theory, nonsingular sliding mode surface was designed. A designing project for the master-slave systems getting fast speed synchronization in finite-time was given by designing terminal sliding model controllers. Both the theoretical analysis and simulation results illustrated the effectiveness of this control method

References

[1]  SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learning control[J]. Chinese Physics B, 2010, 19(2):502-505.
[2]  ZAK M. Terminal attractor sin neural networks[J]. Neual Networks, 1989, 2(4):259-274.
[3]  Man Zhihong, PAPLINSKI A P, WU H R. A robust MIMO terminal sliding mode control scheme for rigid robotic manipulators[J]. IEEE Transactionon Automatic Control, 1994, 39(12):2464-2469.
[4]  陈烨,李生刚,刘恒.基于自适应模糊控制的分数阶混沌系统同步[J].物理学报,2016,65(17):501-511. CHEN Ye, LI Shenggang, LIU Heng. Synchronization of fractional-order chaotic systems based on adaptive fuzzy control[J]. Acta Physics Sinica, 2016, 65(17):501-511.
[5]  李力,周昌乐.基于范德波尔方程的情绪模型[J].厦门大学学报(自然科学版),2011,50(4):703-706. LI Li, ZHOU Changle. Emotin model based on Van der pol equation[J]. Journal of Xiamen University(Science Edition), 2011, 50(4):703-706.
[6]  YU S, YU X, SHIRINZADEH B, et al. Continuous finite-time control for robotic manipulators with terminal sliding mode[J].Automatica, 2005, 41(11):1957-1964.
[7]  张燕兰. 分数阶Rayleigh-Duffing-like系统的自适应追踪广义投影同步[J].动力学与控制学报,2014,12(4):348-352. ZHANG Yanlan. Adaptive tracking generalized projective synchronization of fractional Rayleigh-Duffing-like system[J]. Journal of Dynamics and Control, 2014, 12(4):348-352.
[8]  PODLUBNY I. Fractional differential equations[M]. San Diego: Academic Press, 1999.
[9]  孙宁, 张化光,王智良. 不确定分数阶混沌系统的滑模投影同步[J]. 浙江大学学报(工学版),2010,44(7):1288-1291. SUN Ning, ZHANG Huaguang, WANG Zhiliang. Projective synchronization of uncertain fractional order chaotic system using sliding mode controller[J].Journal of Zhejiang University(Engineering Science), 2010, 44(7):1288-1291.
[10]  余明哲,张友安. 一类不确定分数阶混沌系统的滑模自适应同步[J]. 北京航空航天大学学报,2014,40(9):1276-1280. YU Mingzhe, ZHANG Youan. Sliding mode adaptive synchronization for a class of fractional order chaotic systems with uncertainties[J]. Journal of Beijing University of Aeronautics and Astronautics, 2014, 40(9):1276-1280.
[11]  仲启龙,邵永辉,郑永爱.分数阶混沌系统的主动滑模同步[J].动力学与控制学报, 2015, 13(1):18-22. ZHONG Qilong, SHAO Yonghui, ZHENG Yongai. Active sliding mode synchronization of fractional order chaotic systems[J].Journal of Dynamics and Control, 2015, 13(1):18-22.
[12]  高俊山,宋歌,邓立为. 具有未知参数的混沌系统的有限时间滑模同步[J].控制与决策,2016,52(12):227-335. GAO Junshan, SONG Ge, DENG Liwei. Finite-time sliding mode synchronization control of chaotic systems with uncertain parameters[J]. Control and Decision, 2016, 52(12):227-335.
[13]  邢伟,茅青海. 受周期外界环境影响的Van der pol情绪模型[J].数学建模及其应用,2016,5(1):43-48. XING Wei, MAO Qinghai. Van der pol emotion model affected by cycle of external enviorment[J].Mathematical Modeling and Application, 2016, 5(1):43-48.
[14]  LIU P, LIU S. Robust adaptive full state hybrid synchroniztion of chaotic complex systems with unknown parameters and external disturbances[J].Nonlinear Dynamics, 2012, 70(1):585-599.
[15]  YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J].Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413.
[16]  徐瑞萍,高明美.自适应终端滑模控制不确定混沌系统的同步[J].控制工程,2016,23(5):715-719. XU Ruiping, GAO Mingmei. Synchronization of chaotic systems with uncertainty using adaptive terminal sliding mode controller[J]. Control Engineering of China, 2016, 23(5):715-719.
[17]  颜闽秀,井元伟. 基于终端滑模控制的混沌系统的同步[J]. 东北大学学报(自然科学版), 2007, 28(12):1677-1680. YAN Minxiu, JING Yuanwei. Chaos systems synchronization based on terminal sliding mode control[J]. Journal of East North University(Science Edition), 2007, 28(12):1677-1680.
[18]  毛北行,李巧利.一类多涡卷系统的滑模有限时间混沌同步[J].吉林大学学报(理学版),2016,54(5):1131-1136. MAO Beixing, LI Qiaoli. Finite-time sliding mode chaos synchronization of a kind of multiscroll systems[J]. Journal of Jilin University(Science Edition), 2016, 54(5):1131-1136.
[19]  WANG X, HE Y. Projective synchronization of fractional order chaotic system based on linear separation[J]. Physics Letters A, 2008, 372(4):435-441.
[20]  MOHAMMAD P A, SOHRAB K, GHASSEM A. Finite-time synchronization of two different chaotic systems with unknown parameters via sliding mode technique[J]. Applied Mathematical Modelling, 2011, 35(6):3080-3091.
[21]  梁家荣,谭红艳,樊仲光.广义系统的快速终端滑模控制[J].电子科技大学学报,2011,40(1):11-15. LIANG Jiarong, TAN Hongyan, FAN Zhongguang. Fast terminal sliding mode control for singular systems[J].Journal of University of Electronic Science and Technology of China, 2011, 40(1):11-15.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133