|
- 2018
状态观测器对磁悬浮平台速度与加速度的估算
|
Abstract:
摘要: 为了解决磁悬浮平台悬挂铁块运行时会出现铁块单摆振荡的问题,提出在磁悬浮平台控制系统中构筑状态观测器对磁悬浮平台垂直方向上的速度与加速度进行估计,从而获得系统发生振荡时其阻尼系数的方法。状态观测器以线圈端电压和传感器反馈的悬浮间隙信号为输入,磁悬浮平台垂直方向上的速度与加速度为状态变量,并在保持原系统的鲁棒性不变的情况下对加入观测器的系统进行极点配置。结果表明:加入状态观测器后系统的鲁棒性仍保持良好,并且状态观测器精确地估计磁悬浮平台垂直方向上速度与加速度,能够有效地获取振荡时的阻尼系数的实时信息。
Abstract: In order to solve the problem of single pendulum oscillation during the Maglev platform hanging iron, structuring state observer which could estimate the velocity and the acceleration in vertical direction of maglev system was advanced to obtain damping coefficient when the system oscillating. The state observer took signs of coil voltage and sensor feedback information of the suspension gap sign as input and velocity and acceleration in vertical direction of the Maglev platform as state variable. On the premise of maintaining the robustness of the original system, pole of the system was placed after adding the state observer. The results showed that robustness of the system stayed well after adding the state observer. And the state observer could accurately estimate the velocity and the acceleration in vertical direction of the Maglev platform and effectively obtain the real time information of the damping coefficient
[1] | 汪华峰. 基于滑模状态观测器的正弦波PMSM控制策略研究[D]. 成都:西南交通大学, 2007. WANG Huafeng. Research on sinusoidal PMSM control strategy based on sliding mode state observer[D]. Chendu: Southwest Jiaotong University, 2007. |
[2] | 胡业发. 磁力轴承的基础理论与应用[M]. 天津:机械工业出版社, 2006. |
[3] | 马印才, 王春平, 贾占强. 二阶PID电路状态观测器MATLAB实现[J]. 科学技术与工程, 2007, 7(19):5088-5090. MA Yincai, WANG Chunpin, JIA Zhanqiang. Implementation of state observer for second order PID circuits by MATLAB[J]. Science Technology and Engineering, 2007, 7(19):5088-5090. |
[4] | LIU W Y, CHEN Z H, GE X. Chaotic motion in bounded noise perturbation of simple pendulum and harmonic oscillator: international journal of nonlinear sciences and numerical simulation[J]. International Journal of Nonlinear Sciences & Numerical Simulation, 2003, 4(2):161-168. |
[5] | DEHROUYEH A M, DEHROUYEH M, TORABI M, et al. An investigation into size-dependent vibration damping characteristics of functionally graded viscoelastically damped sandwich microbeams[J]. International Journal of Engineering Science, 2015, 96:68-85. |
[6] | CHA J, JANG E J, MIN J, et al. On the exact solutions of the damped harmonic oscillator with a time-dependent damping constant and a time-dependent angular frequency[J]. Journal of the Korean Physical Society, 2015, 67(2):404-408. |
[7] | WANG G S, LIANG B, TANG Z X. A parameterized design of reduced-order state observer in linear control systems[J]. Procedia Engineering, 2011, 15:974-978. |
[8] | WANG Q, RAN M, DONG C. Robust partial integrated guidance and control for missiles via extended state observer[J]. Isa Trans, 2016, 65. |
[9] | ANTHONY D K, SIMóN F. Improving the accuracy of the n -dB method for determining damping of non-lightly damped systems[J]. Applied Acoustics, 2010, 71(4):299-305. |
[10] | 范友鹏, 刘淑琴, 李红伟,等. 基于干扰观测器的磁轴承开关功放延时补偿[J]. 电机与控制学报, 2013, 17(5):103-109. FAN Youpeng, LIU Shuqin, LI Hongwei, et al. Time-delay compensation of magnetic bearing switching power amplifier based on disturbance observer[J]. Electric Machines and Control, 2013, 17(5):103-109. |
[11] | 刘豹, 唐万生. 现代控制理论[M]. 天津:机械工业出版社, 2006. |
[12] | 周军, 水尊师, 葛致磊. 基于鲁棒状态观测器的运载火箭姿态控制系统设计[J]. 航天控制, 2012, 30(2):11-16. ZHOU Jun, SHUI Zunshi, GE Zhilei. Design of attitude control system for launch vehicle based on robust state observer[J]. Aerospace Control, 2012, 30(2):11-16. |
[13] | SHIBATA T. Layer structures for the solutions to the perturbed simple pendulum problems[J]. Journal of Mathematical Analysis & Applications, 2006, 315(2):725-739. |
[14] | GUO Q, LIU G, XIANG B, et al. Robust control of magnetically suspended gimbals in inertial stabilized platform with wide load range[J]. Mechatronics, 2016, 39:127-135. |
[15] | 赵士鑫. 基于状态观测器的倒立摆控制系统的设计与研究[D]. 沈阳:东北大学, 2009. ZHAO Shixin. The design and study of the inverted pendulum control system based on state observer[D]. Shenyang: Northeastern University, 2009. |
[16] | 朱宁. 自动控制理论[M]. 北京:清华大学出版社, 2014. |
[17] | 陈安安. 磁悬浮平台控制系统的研究[D]. 济南:山东大学, 2016. CHEN An'an. Research on the control system of magnetic levitation platform[D]. Jinan: Shandong University, 2016. |
[18] | 张颖, 陈慧星, 李云钢. 电磁永磁混合EMS型磁浮列车的吸死防护问题研究[J]. 兵工自动化, 2009, 28(1):59-61. ZHANG Yin, CHEN Huixing, LI Yungang. Study on protection against suspension contact in hybrid EMS Maglev Train[J]. Ordnance Industry Automation, 2009, 28(1):59-61. |
[19] | SHIBATA T. Precise asymptotics of boundary layers for damped simple pendulum equations[J]. Results in Mathematics, 2010, 58(1-2):105-118. |
[20] | 卢长明. 主动磁悬浮转子刚度、阻尼分析与研究[D]. 武汉:武汉理工大学, 2008. LU Changming. Analysis and research on stiffness and damping of active magnetic levitation rotor[D]. Wuhan: Wuhan University of Technology, 2008. |
[21] | SUN Q L, SUN Z Y. A simple control strategy to stabilize an inverted pendulum system[J]. Advanced Materials Research, 2012, 433-440:3997-4002. |
[22] | ERAZO K, HERNANDEZ E M. A model-based observer for state and stress estimation in structural and mechanical systems: Experimental validation[J]. Mechanical Systems & Signal Processing, 2014, 43(1-2):141-152. |
[23] | PAIMUSHIN V N, FIRSOV V A, GYUNAL I, et al. Theoretical-experimental method for determining the parameters of damping based on the study of damped flexural vibrations of test specimens. 1.exper?mental bas?s[J]. Mechanics of Composite Materials, 2014, 50(2):127-136. |
[24] | KREBS S, SCHNURR C, PFEIFER M, et al. Reduced-order hybrid interval observer for verified state estimation of an induction machine[J]. Control Engineering Practice, 2016, 57:157-168. |