|
- 2017
基于因果拓扑图的工业过程故障诊断
|
Abstract:
摘要: 基于因果拓扑图的工业过程故障诊断方法,将过程知识与数据驱动故障诊断方法结合,有效解决了故障定位和故障传播路径辨识问题。 在因果拓扑图的基础上,基于偏相关系数提出一种相关性指标(correlation index, CI)定量衡量因果拓扑中变量间的相关性,实现变量间因果性和相关性的良好结合。为得到准确的故障检测结果,采用概率主元分析(PPCA)对CI指标进行监测。在检测出故障后,应用重构贡献图(reconstruction-based contribution, RBC)和因果拓扑图,并引入加权平均值的概念辨识出最可能的故障传播路径。将提出的方法用于带钢热连轧过程,结果表明,基于因果拓扑图的故障诊断方法能够准确地定位故障源,辨识故障传播路径。
Abstract: With the combination of the process knowledge and data driven methods, the fault diagnosis method based on causal topological graph could effectively deal with the fault location and fault propagation identification. A correlation index(CI)based on partial correlation coefficient was applied to the causal topological graph to analyze the correlation between variables quantitatively. The proposed CI was monitored via probabilistic principal component analysis method(PPCA)for fault detection. The concept of mean weighted value and causal topological graph were introduced in order to identify the optimal fault propagation path based on reconstruction-based contribution(RBC)after detecting a fault. The effectiveness of the method was verified by the application of hot strip mill process(HSMP). The results showed that the proposed method could effectively identify the fault roots and propagation paths
[1] | 周扬眉. 向量的加权平均值及其应用[J]. 测绘通报,2004(2):11-26. ZHOU Yangmei. Weighted average value of vector and its application[J]. Bulletin of Surveying and Mapping, 2004(2): 11-26. |
[2] | GE Zhiqiang, SONG Zhihuan. Mixture Bayesian regularization method of PPCA for multimode process monitoring[J]. AIChE Journal, 2010, 56(11): 2838-2849. |
[3] | ALCALA F C, QIN S J. Reconstruction-based contribution for process monitoring[J]. Automatica, 2009, 45(7):1593-1600. |
[4] | NAKAMURA T A, PALHARES R M, CAMINHAS W M, et al. Adaptive fault detection and diagnosis using parsimonious Gaussian mixture models trained with distributed computing techniques[J]. Journal of the Franklin Institute, 2017, 354(6): 2543-2572. |
[5] | 李晗,萧德云. 基于数据驱动的故障诊断方法综述[J]. 控制与决策, 2011, 26(1): 1-9. LI Han, XIAO Deyun. Survey on data driven fault diagnosis methods[J]. Control and Decision, 2011, 26(1): 1-9. |
[6] | 刘强,柴天佑,秦泗钊,等. 基于数据和知识的工业过程监视及故障诊断综述[J]. 控制与决策, 2010,25(6):801-807. LIU Qiang, CHAI Tianyou, QIN Sizhao, et al. Progress of data-driven and knowledge-driven process monitoring and fault diagnosis for industry process[J]. Control and Decision, 2010, 25(6): 801-807. |
[7] | 彭开香,马亮,张凯. 复杂工业过程质量相关的故障检测与诊断技术综述[J]. 自动化学报, 2017, 43(2):1-17. PENG Kaixiang, MA Liang, ZHANG Kai. Review of quality-related fault detection and diagnosis techniques for complex industrial processes[J]. Acta Automatica Sinica, 2017, 43(2): 1-17. |
[8] | ZHANG Kai, HAO Haiyang, CHEN Zhiwen, et al. A comparison and evaluation of key performance indicator-based multivariate statistics process monitoring approaches[J]. Journal of Process Control, 2015, 33(3): 112-126. |
[9] | MACGREGOR J F, KOURTI T. Statistical process control of multivariate processes[J]. Control Engineering Practice, 1995, 3(3): 403-414. |
[10] | MILLER P, SWANSON R E, HECKLER C E. Contribution plots: A missing link in multivariate quality control[J]. Applied Mathematics & Computer Science, 1998, 8(4): 775-792. |
[11] | ZHANG Qin. Dynamic uncertain causality graph for knowledge representation and reasoning: discrete DAG cases[J]. Journal of Computer Science and Technology, 2012, 27(1): 1-23. |
[12] | JIANG Benben, ZHU Xiaoxiang, HUANG Dexian, et al. Canonical variate analysis-based monitoring of process correlation structure using causal feature representation[J]. Journal of Process Control, 2015, 32:109-116. |
[13] | TIPPING M E, BISHOP C M. Probabilistic principal component analysis[J]. Journal of the Royal Statistical Society:Series B, 1999: 611-622. |
[14] | LI Gang, ALCALA F C, QIN S J, et al. Generalized reconstruction-based contributions for output-relevant fault diagnosis with application to the tennessee eastman process[J]. IEEE Transactions on Control Systems Technology, 2011,19(5):1114-1127. |
[15] | LI Guojie, CHENG Xueqi. Research status and scientific thinking of big data[J]. Bulletin of Chinese Academy of Science, 2012, 27(6): 647-657. |
[16] | OSBORNE J W. Improving your data transformations: Applying the box-cox transformation[J]. Practical Assessment, Research & Evaluation, 2010, 15(12): 1-6. |
[17] | 刘鹏鹏,左洪福,苏艳,等. 基于图论模型的故障诊断方法研究进展综述[J]. 中国机械工程,2013,24(5):696-703. LIU Pengpeng, ZUO Hongfu, SU Yan, et al. Review of research progresses for graph-based models in fault diagnosis method[J]. China Mechanical Engineering, 2013, 24(5): 696-703. |
[18] | THAMBIRAJAH J, BENABBAS L, BAUER M. Cause-and-effect analysis in chemical processes utilizing XML, plant connectivity and quantitative process history[J]. Computers & Chemical Engineering, 2009, 33(2): 503-512. |
[19] | PERSON K. Mathematical contributions to the theory of evolution(Ⅲ): regression, heredity, and panmixia[J]. Philosophical Transactions of the Royal Society of London, 1986, 187: 253-318. |
[20] | KIM D, LEE I. Process monitoring based on probabilistic PCA [J]. Chemometrics and Intelligent Laboratory Systems, 2003, 67:109-123. |