|
- 2017
基于自适应区域跟踪的自主式水下机器人容错控制
|
Abstract:
摘要: 研究自主式水下机器人(autonomous underwater vehicle, AUV)的推进器自适应区域跟踪容错控制方法。 与传统的自主式水下机器人容错控制方法不同,采用区域跟踪控制思想,将控制目标设定为以期望轨迹为中心的空间区域。 针对系统中存在的不确定性及推进器故障问题,采用神经网络进行在线辨识。 考虑到推进器故障时存在推力饱和而导致神经网络学习发散的问题,提出一种包含饱和因子的神经网络权值调整方法。 通过仿真,对所提方法的有效性进行验证。
Abstract: An adaptive region tracking fault-tolerant control for the thrusters of autonomous underwater vehicle was proposed. Different from the traditional fault-tolerant control methods of autonomous underwater vehicle, the region tracking control theory was adopted, and the control target was designed as a spatial region. For the uncertainty and thruster fault in the system, the neural network was used to identify them online. Considering the problem of the divergence of neural network caused by the thrust saturation during the thruster fault, a neural network weight adjustment method based on a saturation factor was proposed. The effectiveness of the proposed method was verified by simulation
[1] | CORRADINI M L, MONTERIU A, ORLANDO G. An actuator failure tolerant control scheme for an underwater remotely operated vehicle[J]. IEEE Transactions on Control Systems Technology, 2011, 19(5):1036-1046. |
[2] | KIM D W. Tracking of REMUS autonomous underwater vehicles with actuator saturations[J]. Automatica, 2015, 58:15-21. |
[3] | 张铭钧, 褚振忠. 自主式水下机器人自适应区域跟踪控制[J]. 机械工程学院, 2013, 4(7):148-155. ZHANG Mingjun, CHU Zhenzhong. Adaptive region tracking control for autonomous underwater vehicle[J]. Journal of Mechanical Engineering, 2013, 4(7):148-155. |
[4] | HUANG X, YAN Y, ZHOU Y. Neural network-based adaptive second order sliding mode control of Lorentz-augmented spacecraft formation[J]. Neurocopution, 2017, 222(26):191-203. |
[5] | JIA C, LI X, WANG K, et al. Adaptive control of nonlinear system using online error minimum neural networks[J]. ISA Transactions, 2016, 65:125-132. |
[6] | PODDER T K, SARKAR N. Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy[J]. Robotics and Autonomous Systems, 2001, 34(1):39-52. |
[7] | 朱大奇, 刘乾, 胡震. 无人水下机器人可靠性控制技术[J]. 中国造船,2009,50(2):183-192. ZHU Daqi, LIU Qian, HU Zhen. Reliability control technology of unmanned underwater vehicles[J]. Shipbuilding of China, 2009, 50(2):183-192. |
[8] | CORRADINI M L, CRISTOFARO A. A nonlinear fault-tolerant thruster allocation architecture for underwater remotely operated vehicles[J]. IFAC-PapersOnLine, 2016, 49(23):285-290. |
[9] | GAO J, PROCTOR A A, SHI Y, et al. Hierarchical model predictive image-based visual serving of underwater vehicles with adaptive neural network dynamic control[J]. IEEE Transactions on Cybernetics, 2016, 46(10):2323-2334. |
[10] | 俞建成, 张艾群, 王晓辉,等. 基于模糊神经网络水下机器人直接自适应控制[J]. 自动化学报, 2007, 33(8):840-846. YU Jiancheng, ZHANG Aiqun, WANG Xiaohui, et al. Direct adaptive control of underwater vehicles based on fuzzy neural networks[J]. Acta Automatica Sinica, 2007, 33(8):840-846. |
[11] | LI X, HOU S P, CHEAH C C. Adaptive region tracking control for autonomous underwater vehicle[C] // Proceedings of the 2010 11th International Conference on Control. Automation Robotics & Vision. Singapore: IEEE, 2010:2129-2134. |
[12] | ZHANG M, LIU X, YIN B, et al. Adaptive terminal sliding mode based thruster fault tolerant control for underwater vehicle in time-varying ocean currents[J]. Journal of the Franklin Institute, 2015, 352(11):4935-4961. |
[13] | ISMAIL Z H, MOKHAR M B M, PUTRANTI V W E, et al. A robust dynamic region-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2016, 111:155-165. |
[14] | WANG Y, ZHANG M, WILSON P, et al. Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thrust fault[J]. Ocean Engieering, 2015, 110(1):15-24. |
[15] | CHEAH C C, WANG D Q. Region reaching control of robots: theory and experiments[C] // Proceedings of the 2005 IEEE International Conference on Robotics and Automation. [s.l.] :IEEE, 2005:974-979. |
[16] | ISMAIL Z H, DUNNIGAN M W. A region boundary-based control scheme for an autonomous underwater vehicle[J]. Ocean Engineering, 2011, 38(11):2270-2280. |
[17] | SUN Y S, RAN X R, LI Y M, et al. Thruster fault diagnosis method based on Gaussian particle filter for autonomous underwater vehicles[J]. International Journal of Naval Architecture and Ocean Engineering, 2016, 8(3):243-251. |