|
- 2017
汽车液压式主动稳定杆设计及控制算法
|
Abstract:
摘要: 针对车辆主动侧倾控制问题,基于车辆侧倾与横摆响应特性分析,提出一种液压式主动稳定杆(active stabilizer bar, ASB)系统的设计方案。设计滑模控制算法,以提高车辆的侧倾稳定性。对前、后轴主动式稳定杆的反侧倾力矩进行动态分配,以改善车辆的转向特性。基于MATLAB/Simulink,建立了14自由度整车动力学模型、液压系统模型、路面输入模型等,在典型工况下分别对PID+前馈控制和滑模控制系统进行仿真研究。仿真结果表明:与传统的PID+前馈控制相比,采用滑模控制算法的液压式ASB系统在鲁棒性和适应性方面具有明显优势,有效地改善车辆的侧倾与横摆响应,进一步提高了车辆的侧倾稳定性、行驶平顺性与操纵稳定性。
Abstract: According to vehicles active roll control, a design solution to hydraulic active stabilizer bar(ASB)system was put forward based on the analysis of vehicles roll and yaw response characteristics. The structure and principle of hydraulic ASB system was introduced, and its sliding mode control algorithm was designed to improve the vehicles roll stability. The anti-roll torque of ASB system on the front and rear axles were distributed dynamically to improve vehicles steering characteristics. Based on MATLAB/Simulink, 14 degree-of-freedom vehicle, hydraulic actuators model, road input model and so on were established. The simulation of PID+feedforward control and sliding mode control system was carried out under typical maneuvers. Simulation results showed that the hydraulic ASB system using sliding mode control algorithm had obvious advantage in the robustness and adaptability compared with PID+feedforward control, which could enhance vehicle roll and yaw response effectively, and improve roll stability, ride comfort and handling stability further
[1] | 夏如艇,武马修一. 采用电机作动器的主动悬架系统的仿真[J].汽车工程,2013, 35(5):445-450. XIA Ruting, BUMA Shunichi. A simulation of active suspension system with motor actuator[J]. Automotive Engineering, 2013, 35(5): 445-450. |
[2] | 孔振兴,皮大伟,王洪亮,等. 考虑液压迟滞的汽车主动式稳定杆改进算法[J].科学技术与工程,2016, 16(26):122-126, 134. KONG Zhenxing, PI Dawei, WANG Hongliang, et al. Improved control algorithm for vehicle active stabilizer bar considering hydraulic delay[J]. Science Technology and Engineering, 2016, 16(26):122-126, 134. |
[3] | LAM Q, WANG Lifu, ZHANG Nong. Experimental implimentation of a fuzzy controller for an active hydraulically interconnected suspension on a sport utility vehicle[C] //Intelligent Vehicles Symposium. Piscataway, the United States: IEEE, 2013:383-390. |
[4] | GHIKE C, SHIM T. 14 degree-of-freedom vehicle model for roll dynamics study[C] //SAE Technical Paper. Warrendale, the United States: SAE World Congress & Exhibition, 2006. |
[5] | KIM S, PARK K, SONG H J, et al. Development of control logic for hydraulic active roll control system[J]. International Journal of Automotive Technology, 2012, 13(1):87-95. |
[6] | SORNIOTTI A, D'ALFIO N. Vehicle dynamics simulation to develop an active roll control system[C] //SAE Technical Paper. Warrendale, the United States: SAE World Congress & Exhibition, 2007. |
[7] | DUGOFF H, FANCHER P S, SEGEL L. An analysis of tire traction properties and their influence on vehicle dynamic performance[C] //International Automobile Safety Conference. Warrendale, the United States: SAE Transactions, 1970. |
[8] | 张立军,张天侠.车辆四轮相关时域随机输入通用模型的研究[J].农业机械学报, 2005(12):29-31. ZHANG Lijun, ZHANG Tianxia. Study on general model of random inputs of the vehicle with four wheels correlated in time domain[J]. Transactions of the Chinese Society for Agricultural Machinery, 2005(12):29-31. |
[9] | 金智林,翁建生,胡海岩. 汽车侧翻及稳定性分析[J].机械科学与技术, 2007, 26(3):355-358. JIN Zhilin, WENG Jiansheng, HU Haiyan. Analysis of vehicles rollover stability[J]. Mechanical science and Technology, 2007, 26(3):355-358. |
[10] | 赵韩,赵福民,黄康,等. 液压马达式汽车主动稳定杆系统建模与控制[J]. 中国机械工程, 2016, 27(14):1976-1981. ZHAO Han, ZHAO Fumin, HUANG Kang, et al. Modeling and control of vehicle active stabilizer bar system with hydraulic motor[J]. China Mechanical Engineering, 2016, 27(14):1976-1981. |
[11] | KIM H J, YANG H S, PARK Y P, et al. Robust roll control of a vehicle: experimental study using a hardware-in-the-loop set-up[J]. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering, 2002, 216(1):1-9. |
[12] | 唐新蓬,段小成. 汽车侧倾稳定主动控制系统的仿真研究[J]. 汽车技术, 2008(8): 23-27. TANG Xinpeng, DUAN Xiaocheng. Simulation and study of vehicle roll active control system[J]. Automobile Technology, 2008(8):23-27. |
[13] | KIM H J. Robust roll motion control of a vehicle using integrated control strategy[J]. Control Engineering Practice, 2011, 19: 820-827. |
[14] | MIZUTA Y, SUZUMURA M, MATSUMOTO S. Ride comfort enhancement and energy efficiency using electric active stabiliser system[J]. Vehicle System Dynamics: International Journal of Vehicle Mechanics & Mobility, 2010, 48(11):1305-1323. |
[15] | JEON K, HWANG H, CHOI S, et al. Development of an electric active roll control(ARC)algorithm for a SUV[J]. International Journal of Automotive Technology, 2012, 13(2):247-253. |
[16] | 周兵,吕绪宁,范璐,等. 主动悬架与主动横向稳定杆的集成控制[J]. 中国机械工程, 2014(14):1978-1983. ZHOU Bing, LYU Xuning, FAN Lu, et al. Integrated control of active suspension system and active roll stabilizer [J]. China Mechanical Engineering, 2014(14):1978-1983. |
[17] | 王梦琳,孙涛,郑松林,等. 基于底盘子系统协同控制的车辆防侧翻性能分析[J]. 系统仿真学报, 2015, 27(1):163-170. WANG Mengling, SUN Tao, ZHENG Songlin, et al. Simulation of anti-rollover performance based on chassis collaborative control[J]. Journal of System Simulation, 2015, 27(1):163-170. |
[18] | VARGA B, NéMETH B, GáSPáR P. Design of anti-roll bar systems based on hierarchical control[J]. Strojni?ki Vestnik-Journal of Mechanical Engineering, 2015, 61(6): 374-382. |
[19] | KONG Zhenxing, PI Dawei, WANG Xianhui, et al. Design and evaluation of a hierarchical control algorithm for an electric active stabilizer bar system[J]. Strojni?ki Vestnik-Journal of Mechanical Engineering, 2016, 62(10): 565-576. |
[20] | KONG Zhenxing, PI Dawei, CHEN Shan, et al. Design and simulation of hierarchical control algorithm for electric active stabilizer bar system[C] //Chinese Control and Decision Conference. Piscataway, the United States: IEEE, 2016. |