全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于图像块先验的低秩近似和维纳滤波的去噪算法
Image patch prior based denoising algorithm by using low rank approximation and Wiener filtering

DOI: 10.6040/j.issn.1672-3961.0.2017.009

Keywords: 先验,低秩近似,维纳滤波,高斯混合模型,
low-rank approximation
,prior,Wiener filtering,Gaussia mixture model

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 利用混合高斯模型(gaussian mixture model, GMM)学习自然图像块的纹理结构,提出一种基于图像块先验的低秩近似和维纳滤波的去噪算法。该算法能够同时利用外部图像块的先验结构信息和内部图像的自相似性,对待去噪图像进行分块聚类,并根据每类相似块的数量进行协同滤波。当相似图像块数量较多时,采用低秩近似的方法复原,有效利用图像的内部自相似性;当相似图像块数量较少时,采用维纳滤波,利用先验信息保持图像重要的纹理结构。试验结果表明此方法较适用于弧形边界和角点等存在较少相似块的自然图像,其峰值信噪比(peak signal to noise ratio, PSNR)和视觉效果优于目前部分主流算法。
Abstract: A Gaussian mixture model(GMM)was used to study the texture structure of natural image patches, and a low-rank approximation and Wiener filtering algorithm based on image patch prior were proposed. The proposed method divided the image into a number of overlapped patches and clustered them for collaborative filtering by using the prior structures of external image patch and internal image self-similarity. By grouping nonlocal similar patches, low-rank approximation was used as collaborative filtering to recover the texture structures. When the number of similar patches was small, Wiener filtering with patch prior was adopted to preserve texture features. The experimental results indicated that the proposed method was more suitable for the images with fewer similar patches like boundary and corner etc., and showed very competitive performance with state-of-the-art denoising method in terms of Peak Signal to Noise Ratio(PSNR)and visual quality

References

[1]  RUDIN L I, OSHER S, FATEMI E. Nonlinear total variation based noise removal algorithms[J].Physica D: Nonlinear Phenomena,1992, 60(1):259-268.
[2]  PORTILLA J, STRELA V, WAINWRIGHT M, et al, Image denoising using scale mixturesof Gaussians in the waveletdomain[J].IEEE Transactions on Image Processing A Publication of the IEEE Signal Processing Society, 2003, 12(11):1338-1351.
[3]  AHARON M, ELAD M, BRUCKSTEIN A. K-svd: an algorithm for designing overcomplete dictionaries for sparse representation[J]. IEEE Transactions on Signal Processing, 2006, 54(11): 4311-4322.
[4]  GU S, ZHANG L, ZUO W, et al. Weighted nuclear nor-m minimization with application to image denoising[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2014). Columbus, USA: IEEE Computer Society, 2014:2862-2869.
[5]  DONG W, SHI G, LI X, et al. Compressive sensing via nonlocal low rank regularization[J]. IEEE Transactions on Image Processing, 2014, 23(8): 3618-3632.
[6]  刘波,杨华,张志强.基于奇异值分解的图像去噪[J].微电子学与计算机,2007,24(11):169-171. LIU Bo, YANG Hua, ZHANG Zhiqiang. Image denoisingbased on singular value decomposition[J]. Microelectronics and Computer, 2007, 24(11):169-171.
[7]  张俊峰,孙清伟.基于图像旋转和分块的奇异值分解图像去噪[J].激光与红外,2009,39(5):538-541. ZHANG Junfeng, SUN Qingwei. Image denoising based on SVD using image rotation and block[J]. Laser and Infrared, 2009, 39(5):538-541.
[8]  BURGER H, SCHULER C, HARMELING S. Image denoising: can plain neural networks compete with bm3d[C] //Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition(CVPR 2012). Rhode Island, USA: IEEE Computer Society, 2012:2392-2399.
[9]  CHEN F, ZHANG L, YU H M. External patch prior guided internal clustering for image denoising[C] //Proceedings of the 2015 IEEE International Conference on Computer Vision(ICCV). San Diego, USA: IEEE Computer Society, 2015:603-611.
[10]  ZORAN D, WEISS Y. From learning models of natural image patches to whole image restoration[C] //Proceedings of the 13<sup>th</sup> International Conference on Computer Vision(ICCV 2011). Barcelona, Spain: IEEE Computer Society, 2011, 6669(5): 479-486.
[11]  CHATTERJEE P, MILANFAR P. Learning denoising bounds fornoisy images[C] //Proceedings of the 17<sup>th</sup>International Conference on Image Processing(ICIP 2010). Hong Kong, China: IEEE Computer Society, 2010:1157-1160.
[12]  MAIRAL J, BACH F, PONCE J, et al. Non-local sparse models for image restoration[C] //Proceedings of the 12th International Conference on Computer Vision(ICCV 2009). Kyoto, Japan: IEEE Computer Society, 2009, 30(2):2272-2279.
[13]  DONG W, SHI G, LI X. Nonlocal image restoration wi-th bilateral variance estimation: a low-rank approach[J].IEEE Transaction on Image Processing, 2013, 22(2):700-711.
[14]  DEMPSTER A P, LAIRD N M, RUBIN D B.Maximum likelihood from incomplete data via the EM algorithm[J]. Journal of the Royal Statistical Society. Series B(Methodological), 1977, 39(1):1-38.
[15]  CAI J F, CANDES E J, SHEN Z W. A singular value thresholding algorithm for matrix completion[J]. SIAM Journal on Optimization, 2010, 20(4):1956-1982.
[16]  DABOV K, FOI A, KATKOVNIK V, et al. Image denoising by sparse 3-d transform-domain collaborative filtering[J]. IEEE Transactions on Image Processing, 2007,16(8):2080-2095.
[17]  BUADES A, COLL B, MOREL J M. A nonlocal algorithm for image denoising[C] //Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR'05). SanDiego, USA: IEEE Computer Society, 2005.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133