全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

计算机辅助外科手术中医疗机器人技术研究综述
Survey on medical robot in computer-aided surgery

DOI: 10.6040/j.issn.1672-3961.0.2016.482

Keywords: 医疗机器人,神经外科手术机器人,窥镜外科手术机器人,介入治疗手术机器人,骨外科手术机器人,
medical robot
,neurological robot,laparoscopic robot,intervention robot,orthopedic robot

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 在计算机辅助手术领域中医疗机器人技术是目前一个研究热点。介绍医疗机器人技术的概念以及在计算机辅助手术中应用的必要性;针对医疗机器人技术在计算机辅助手术领域中的国内外研究现状,从骨外科、神经外科、窥镜外科和介入治疗等四个方面,分别进行了详细综述,并介绍具有代表性的外科手术机器人系统;通过分析医疗机器人当前的研究现状,指出内窥镜外科手术机器人将是未来医疗机器人的发展方向,通过探讨内窥镜外科手术机器人所涉及的四个亟待解决的问题,指出了需要进一步研究和发展的方向。
Abstract: The application of medical robot technique in computer-aided surgery was a hot research topic at present. The concept of medical robot was introduced, and the necessity of its application in computer-aided surgery was also emphasized. The state of arts of medical robot technique was discussed systematically in computer-aided surgery, covering the four aspects: orthopedic surgery, neurological surgery, laparoscopic surgery and intervention surgery. Besides, some corresponding medical robot systems were also introduced. Through the analysis on the medical robot technique, the laparoscopic robot was considered as the most promising research direction. There were four urgent problems concerning the laparoscopic robot. Based on the four problems, further research questions and possible directions in the future were proposed

References

[1]  LANFRANCO A R, CASTELLANOS A E, DESAI J P, et al. Robotic surgery: a current perspective[J]. Annals of Surgery, 2004, 239(1):14-21.
[2]  SCHULZ A P, SEIDE K, QUEITSCH C, et al. Results of total hip replacement using the Robodoc surgical assistant system: clinical outcome and evaluation of complications for 97 procedures[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2007, 3(4):301-306.
[3]  REDDY V Y, NEUZIL P, MALCHANO Z J, et al. View-synchronized robotic image-guided therapy for atrial fibrillation ablation: experimental validation and clinical feasibility[J]. Circulation, 2007, 115(21): 2705-2714.
[4]  RIGA C V, BICKNELL C D, WALLACE D, et al. Robot-assisted antegrade in-situ fenestrated stent grafting[J]. Cardio Vascular and Interventional Radiology, 2009, 32(3): 522-524.
[5]  赵子健,翁莹. 视觉透视技术在计算机辅助手术领域的研究综述[J]. 中国生物医学工程学报,2014,33(3):349-357. ZHAO Zijian,WENG Ying. Survey of see-through technique in computer-aided surgery[J]. Chinese Journal of Biomedical Engineering, 2014, 33(3):349-357.
[6]  HANNA G B, SHIMI S M, CUSCHIERI A. Task performance in endoscopic surgery is influenced by location of the image display[J]. Annals of Surgery, 1998, 227(4):481-484.
[7]  KAZANZIDES P, ZUHARS J, MITTELSTADT B, et al. Force sensing and control for a surgical robot[C] //Proceedings of the 1992 IEEE International Conference on Robotics and Automation(ICRA). Nice, France:IEEE, 1992:612-617.
[8]  KOULALIS D, O'LOUGHLIN P F, PLASKOS C, et al. Sequential versus automated cutting guides in computer-assisted total knee arthroplasty[J]. The Knee, 2011, 18(6):436-442.
[9]  MORGAN P S, CARTER T, DAVIS S, et al. The application accuracy of the Pathfinder neurosurgical robot[J].International Congress Series. Amsterdam, The Netherlands: Elsevier, 2003, 1256: 561-567.
[10]  SUNG G T, GILL I S. Robotic laparoscopic surgery: a comparison of the da Vinci and Zeus systems[J]. Urology, 2001, 58(6): 893-898.
[11]  HOWE R D, MATSUOKA Y. Robotics for surgery[J]. Annual Review of Biomedical Engineering, 1999, 1(1): 211-240.
[12]  DAVIES B. A review of robotics in surgery[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2000, 214(1):129-140.
[13]  TAYLOR R H, STOIANOVICI D. Medical robotics in computer-integrated surgery[J]. IEEE Transactions on Robotics and Automation, 2003, 19(5):765-781.
[14]  BARGAR W L, BAUER A, B?RNER M. Primary and revision total hip replacement using the robodoc system[J]. Clinical Orthopaedics and Related Research, 1998, 354:82-91.
[15]  PEARLE A D, O'LOUGHLIN P F, KENDOFF D O. Robot-assisted unicompartmental knee arthroplasty[J]. The Journal of Arthroplasty, 2010, 25(2):230-237.
[16]  LI Q H, ZAMORANO L, PANDYA A, et al. The application accuracy of the NeuroMate robot—A quantitative comparison with frameless and frame-based surgical localization systems[J]. Computer Aided Surgery, 2002, 7(2): 90-98.
[17]  ROSEN J, HANNAFORD B, SATAVA R, et al. Surgical robotics: systems applications and visions[M]. New York, USA: Springer, 2011.
[18]  DEACON G, HARWOOD A, HOLDBACK J, et al. The Pathfinder image-guided surgical robot[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(5): 691-713.
[19]  YEN P L, DAVIES B L. Active constraint control for image-guided robotic surgery[J]. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine, 2010, 224(5):623-631.
[20]  PEARLE A D, KENDOFF D, STUEBER V, et al. Perioperative management of unicompartmental knee arthroplasty using the MAKO robotic arm system(MAKOplasty)[J]. American Journal of Orthopedics, 2009, 38(2):16-19.
[21]  PRYTZ E, MONTANO M, SCERBO M W. Using Fitts' law for a 3D pointing task on a 2D display: effects of depth and vantage point [C] //Proceedings of the Human Factors and Ergonomics Society. Boston: Sage Publications, 2012: 1391-1395.
[22]  JONES J A, SWAN II J E, SINGH G, et al. Peripheral visual information and its effect on distance judgments in virtual and augmented environments[C] //Proceedings of the APGV 2011: ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization. Toulouse, France: ACM, 2011: 29-36.
[23]  SINGH G, SWAN II J E, JONES J A, et al. Depth judgments by reaching and matching in near-field augmented reality [C] //Proceedings of the 2012 IEEE Virtual Reality. Orange County, CA: IEEE Computer Society, 2012: 165-166.
[24]  JONES J A, SUMA E A, KRUM D M, et al. Comparability of narrow and wide field-of-view head-mounted displays for medium-field distance judgments [C] //Proceedings of the 2012 ACM Symposium on Applied Perception. Los Angeles, USA: ACM, 2012:119-122.
[25]  BRODIE J, ELJAMEL S. Evaluation of a neurosurgical robotic system to make accurate burr holes[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2011, 7(1): 101-106.
[26]  JOSKOWICZ L, SHAMIR R, ISRAEL Z, et al. Renaissance robotic system for keyhole cranial neurosurgery: in-vitro accuracy study[C] //Proceedings of the Simposio Mexicano en Ciruga Asistida por Computadoray Procesamiento de Imgenes Mdicas(MexCAS'11). [S.l.] :[s.n.] , 2011.
[27]  PLASKOS C, CINQUIN P, LAVALLéE S, et al. Praxiteles: a miniature bone-mounted robot for minimal access total knee arthroplasty[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2005, 1(4):67-79.
[28]  ZHAO Z, LIU Y. A new computer assisted orthopaedic surgery system: WATO[J]. Chinese Journal of Biomedical Engineering, 2013, 22(4): 139-147.
[29]  VARMA T R K, ELDRIDGE P. Use of the NeuroMate stereotactic robot in a frameless mode for functional neurosurgery[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2006, 2(2): 107-113.
[30]  唐粲,王田苗,丑武胜,等. 脑外科机器人控制系统的设计和实现[J]. 机器人,2004,26(6):543-547. TANG Can, WANG Tianmiao, CHOU Wusheng, et al. Design and realization of robot control system for neurosurgery[J].Robot, 2004, 26(6):543-547.
[31]  BALLANTYNE G H. Robotic surgery, telerobotic surgery, telepresence, and telementoring: review of early clinical results[J]. Surgical Endoscopy and Other Interventional Techniques, 2002, 16(10): 1389-1402.
[32]  MOZER P, TROCCAZ J, STOIANOVICI D. Robotics in urology: past, present, and future[M] //Atlas of Robotic Urologic Surgery. New York, USA: Springer, 2011: 3-13.
[33]  SHAH K, ABAZA R. Comparison of intraoperative outcomes using the new and old generation da Vinci<sup>?</sup> robot for robot-assisted laparoscopic prostatectomy[J]. British Journal of Urology International, 2011, 108(10): 1642-1645.
[34]  STARK M, BENHIDJEB T, GIDARO S, et al. The future of telesurgery: a universal system with haptic sensation[J]. Journal of the Turkish German Gynecological Association, 2012, 13(1): 74.
[35]  CHUN K R J, SCHMIDT B, K?KTüRK B, et al. Catheter ablation-new developments in robotics[J]. Herz, 2008, 33(8): 586-589.
[36]  ERNST S, OUYANG F, LINDER C, et al. Initial experience with remote catheter ablation using a novel magnetic navigation system[J]. Circulation, 2004, 109(12): 1472-1475.
[37]  CHUN J K R, ERNST S, MATTHEWS S, et al. Remote-controlled catheter ablation of accessory pathways: results from the magnetic laboratory[J]. European Heart Journal, 2007, 28(2):190-195.
[38]  XU K, GOLDMAN R E, DING J, et al. System design of an insertable robotic effector platform for single port access(SPA)surgery[C] //Proceedings of the 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems(IROS'2009). St. Louis, USA: IEEE, 2009: 5546-5552.
[39]  SHANG J, NOONAN D P, PAYNE C, et al. An articulated universal joint based flexible access robot for minimally invasive surgery[C] //Proceedings of the 2011 IEEE International Conference on Robotics and Automation. Shanghai, China:IEEE, 2011: 1147-1152.
[40]  PANDALAI S, KAVANAGH D O, NEARY P. Robotic assisted laparoscopic colectomy[J]. Irish Journal of Medical Science, 2010, 103(6):181-182.
[41]  KUHL S A, THOMPSON W B, CREEM-REGEHR S H. HMD calibration and its effects on distance judgments[J]. ACM Transactions on Applied Perception(TAP), 2009, 6(3): 19.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133