全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

一类分数阶冠状动脉系统的混沌同步控制
Chaos synchronization of a class of fractional-order coronary artery systems

DOI: 10.6040/j.issn.1672-3961.0.2016.463

Keywords: 冠状动脉,混沌同步,滑模,分数阶系统,
fractional-order systems
,coronary artery,sliding mode,chaos synchronization

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 基于Lyapunov稳定性理论和分数阶微积分,研究一类分数阶冠状动脉系统的混沌同步问题,给出系统取得同步的三个充分性条件。研究表明:选取适当的控制器,系统能够取得混沌同步。
Abstract: The problem of chaos synchronization for a class of fractional-order coronary artery systems was studied based on Lyapunov stability theory and fractional-order calculus. Three sufficient conditions were arrived that the fractional order systems was chaos synchronized under appropriate controller. The research conclusion illustrated that systems was chaos synchronization under proper conditions

References

[1]  YASSEN M T. Controlling chaos and synchronization for new chaotic system using linear feedback control[J]. Chaos, Solition & Fractals, 2005, 26(3):913-920.
[2]  CHEN M, CHEN W. Robust adaptive neural network synchronization controller design for a class of time delay uncertain chaotic systems[J]. Chaos, Solition & Fractals, 2009, 41(5):2716-2724.
[3]  PECORA L M, CAROLL T L. Synchronization in chaotic systems[J]. Physics Review Letters, 1990, 64(8):821-824.
[4]  毛北行. 两类分数阶系统的观测器同步[J].吉林大学学报(理学版),2017,55(1):139-144. MAO Beixing. Observer synchronization of two kinds of fractional-order systems[J]. Journal of Jiling University(Science Edition), 2017, 55(1):139-144.
[5]  毛北行,李巧利.一类分数阶Genesio-Tesi系统分的滑模混沌同步[J]. 中山大学学报(自然科学版),2017,56(2):76-79. MAO Beixing, LI Qiaoli. Sliding mode chaos synchronization of a class of fractional-order Genesio-Tesi systems[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2017, 56(2):76-79.
[6]  XI Huiling, YU Simin, ZHANG Ruixia, et al. Adaptive impulsive synchronization for a class of fractional-order chaotic and hyperchaotic systems[J]. Optik Optics, 2014(125):2036-2040.
[7]  YANG L, YANG J. Robust finite-time convergence of chaotic systems via adaptive terminal sliding mode scheme[J]. Communications in Nonlinear Science and Numerical Simulation, 2011, 16(6):2405-2413.
[8]  AGHABABA M P, AKBARI M E. A chattering-free robust adaptive sliding mode controller for synchronization of two different chaotic systems with unknown uncertainties and external disturbances[J]. Applied Mathematics and Computation, 2012, 218(9):5757-5768.
[9]  贡崇颖,李医民,孙曦浩.肌型血管生物数学模型的自适应Backstepping控制设计[J].生物数学学报,2007,22(3):503-508. GONG Chongying, LI Yimin, SUN Xihao. Adaptive Backstepping control of the biomathematical model of muscular blood vessel[J]. Journal of Biomathematics, 2007, 22(3):503-508.
[10]  POD LUBN Y. Fractional differential equation[M]. San Diego, CA, USA: Academic Press, 1999.
[11]  SRIVASTAVA H, OWA S. Univalent functions, fractional calculus and their applications[M]. New Jersey, USA: Prentice hall, 1989.
[12]  WU X J, LU H T. Adaptive generalized function projective lag synchronization of different chaotic systems with fully uncertain parameters[J]. Chaos, Solition & Fractals, 2011, 44(10):820-810.
[13]  SALARIEH H, ALASTY A. Adaptive synchronization of two chaotic systems with stochastic unknown parameters[J].Communications in Nonlinear Science and Numerical Simulation, 2009, 14(2):508-519.
[14]  SUN Y P, LI J M, WANG J A, et al. Generalized projective synchronization of chaotic systems via adaptive learing control[J]. Chinese Physics B, 2010, 19(2):502-505.
[15]  AGHABABA M P, HEYDARI A. Chaos synchronization between two different chaotic systems with uncertainties, external disturbances, unknown parameters and input nonlinearities[J]. Applied Mathematical Modlling, 2012, 36(4):1639-1652.
[16]  孙宁,张化光,王智良. 不确定分数阶混沌系统的滑模投影同步[J].浙江大学学报(工学版),2010,44(7):1288-1291. SUN Ning, ZHANG Huaguang, WANG Zhiliang. Projective synchronization of uncertain fractional order chaotic system using sliding mod econtroller[J]. Journal of Zhejiang University(Engineering Science), 2010, 44(7):1288-1291.
[17]  LIU P, LIU S. Robust adaptive full state hybrid synchronization of chaotic complex systems with unkown parameters and external disturbances[J]. Nonlinear Dynamics, 2012, 70(1):585-599.
[18]  仲启龙,邵永辉,郑永爱. 分数阶混沌系统的主动滑模同步[J].动力学与控制学报,2015,13(1):18-22. ZHONG Qilong, SHAO Yonghui, ZHENG Yongai. Synchronization of the fractional order chaotic systems based on TS models[J]. Journal of Dynanics and Control, 2015,13(1):18-22.
[19]  TRAN Xuan Toa, KANG Hee Jun. Robust adaptive chatter-free finite-time control method for chaos control and(anti-)synchronization of uncertain(hyper)chaotic systems[J]. Nolinear Dynamics, 2015(80):637-651.
[20]  赵占山,张静,丁刚,等. 冠状动脉系统高阶滑模自适应混沌同步设计[J].物理学报,2015,64(21):5081-5088. ZHAO Zhanshan, ZHANG Jing, DING Gang, et al. Self-adaptive slding mode chaos synchronization of high-order coronary artery systems[J]. Acta Phyis, 2015, 64(21):5081-5088.
[21]  HILFER R. Applications of fractional calculus in physics[M]. Singapore: World Scientific York, 2000.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133