全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

基于马氏距离的分段矢量量化时间序列分类
Time series classification using piecewise vector quantized approximation based on Mahalanobis distance

DOI: 10.6040/j.issn.1672-3961.2.2015.050

Keywords: 分段矢量量化,马氏距离,重构,特征量纲,时间序列,欧氏距离,码本,
time series
,piecewise vector quantized approximation,reconstruct,Mahalanobis distance,codebook,characteristic dimension,Euclidean distance

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 提出一种基于马氏距离的分段矢量量化时间序列分类(Mahalanobis distance-based time series classification using PVQA, MPVQA)算法。该算法在继承传统算法时间复杂度的基础上,引入马氏距离,克服了欧氏距离容易受模式特征量纲影响的缺点,提高了算法精度。首先,在训练时采用分段矢量量化近似方法获得码本,然后以马氏距离为相似性度量对时间序列进行分段重构。对重构后的时间序列,同样基于马氏距离为相似性度量进行判别。在4个时间序列数据集上进行的试验结果验证了所提方法在时间序列表示和分类上的优越性。
Abstract: A Mahalanobis distance-based time series classification using PVQA(MPVQA)algorithm was developed. On the basis of inheriting the time complexity of the traditional algorithm and by exploiting Mahalanobis distance, the algorithm could easily overcome the default that the Euclidean distance was easily influenced by the mode characteristic dimension and improve the accuracy. PVQA was first used to generate a codebook using training samples, and then the Mahalanobis distance was taken as the measure of similarity and used to reconstruct time subsequences. For an unseen time series, the Mahalanobis distance was also adopted to find the most similar one to it. Experimental results on four time series datasets demonstrated that our method was more powerful to classify the time series

References

[1]  FALOUTSOS C, RANGANATHAN M, MANOLOPOULOS Y, et al. Fast subsequence matching in time-series databases[J]. ACM Sigmod Record, 2000, 23(2):419-429.
[2]  CHAN K P, FU A W C. Efficient time series matching by wavelets[C] //Proceedings of IEEE International Conference on Data Engineering. Sydney, NSW:IEEE, 1999:126-133.
[3]  CHAN F K P, FU A W, YU C. Haar wavelets for efficient similarity search of time-series: with and without time warping[J]. Knowledge and Data Engineering, IEEE Transactions on, 2003, 15(3):686-705.
[4]  LIN J, KEOGH E, WEI L, et al. Experiencing SAX: a novel symbolic representation of time series[J]. Data Mining and knowledge discovery, 2007, 15(2):107-144.
[5]  LI H, YANG L. Time series visualization based on shape features[J]. Knowledge-Based Systems, 2013, 41(1):43-53.
[6]  KEOGH E, LIN J, FU A. Hot sax: efficiently finding the most unusual time series subsequence[J].Data Mining, 2005, 11(1):226-233.
[7]  HUANG F, ZHOU J, LU X D. The simulation of one-dimensional range profile recognition based on Mahalanobisdistance[J]. Computer Simulation, 2010, 27(3):31-34.
[8]  MEGALOOIKONOMOU V, LI G, WANG Q. A dimensionality reduction technique for efficient similarity analysis of time series databases[C] //Proceedings of the thirteenth ACM international conference on Information and knowledge management. New York, USA:ACM, 2004:160-161.
[9]  DELATHAUWER L, DE Moor B, VANDEWALLE J. A multilinear singular value decomposition[J]. SIAM journal on Matrix Analysis and Applications, 2000, 21(4):1253-1278.
[10]  WANG Q, MEGALOOIKONOMOU V. A dimensionality reduction technique for efficient time series similarity analysis[J]. Information Systems, 2008, 33(1):115-132.
[11]  LI H, YAND L, GUO C. Improved piecewise vector quantized approximation based on normalized time subsequences[J]. Measurement, 2013, 46(9):3429-3439.
[12]  DING H, TRAJCEVSKI G, SCHEUERMANN P, et al. Querying and mining of time series data: experimental comparison of representations and distance measures[J]. Proceedings of the VLDB Endowment, 2008, 1(2):1542-1552.
[13]  DONG Y, SUN Z, JIA H. A cosine similarity-based negative selection algorithm for time series novelty detection[J]. Mechanical Systems and Signal Processing, 2006, 20(6):1461-1472.
[14]  DEMAESSCHALCK R, JOUAN-RIMBAUD D, MASSART D L. The Mahalanobis distance[J]. Chemometrics and Intelligent Laboratory Systems, 2000, 50(1):1-18.
[15]  WANG X J, WANG L. Applications of Topsis improved based on Mahalanobis distance in supplier selection[J]. Control and Decision, 2012, 27(10):1566-1570.
[16]  ZHU W D, HU J L. Sparse representation classification algorithm based on Mahalanobis distance[J]. Computer Technology and Development, 2011, 21(11):27-30.
[17]  SASIKALA I S, BANU N. Privacy Preserving data mining using piecewise vector quantization(PVQ)[J]. International Journal of Advanced Research in Computer Science & Technology, 2014, 2(3):302-306.
[18]  LU Z M, WANG J X, LIU B B. An improved lossless data hiding scheme based on image VQ-index residual value coding[J]. Journal of Systems and Software, 2009, 82(6):1016-1024.
[19]  WANG Q, MEGALOOIKONOMOU V, FALOUTSOS C. Time series analysis with multiple resolutions[J]. Information Systems, 2010, 35(1):56-74.
[20]  KEOGH E. Welcome to the UCR time series classification/clustering page [DB/OL]. [2015-03-12]. http://www.cs.ucr.edu/~eamonn/time<sub>-</sub>series<sub>-</sub>data/.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133