全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

基于Markov随机场的Student's t混合模型的脑MR图像分割
Brain MR image segmentation based on student's t mixture model with Markov random field

DOI: 10.6040/j.issn.1672-3961.0.2016.310

Keywords: 脑MR图像分割,期望最大化算法,Student's t混合模型,Markov随机场,
brain MR image segmentation
,Markov random field,expectation maximization algorithm,student's t-mixture model

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 为解决在使用期望最大化(EM)算法求解混合模型前需要额外的计算问题,提出一种新的基于Markov随机场的Student's t混合模型,该模型能直接利用简单有效的EM算法求解。试验结果表明,该方法能有效克服噪声对图像分割的影响,获得较好的分割结果。
Abstract: Extra computation was always needed when using Expectation Maximization(EM)algorithm for solving mixture models. To overcome this drawback, a novel Student's t-mixture model based on Markov random field was proposed. EM algorithm was used directly in the proposed model, which was convenient and efficient. According to the experimental results, the proposed method could overcome the impact of noise on the segmentation results efficiently, and got better segmentation results

References

[1]  ZHANG H, WEN T, ZHENG Y, et al. Two fast and robust modified Gaussian mixture models incorporating local spatial information for image segmentation [J].Journal of Signal Processing Systems, 2015, 81(1):45-58.
[2]  BALAFAR M A, RAMLI A R, SARIPAN M I, et al. Review of brain MRI image segmentation methods[J]. Artificial Intelligence Review, 2010, 33(3):261-274.
[3]  SFIKAS G, NIKOU C, GALATSANOS N. Robust image segmentation with mixtures of student's t-distributions[C] //Proceedings of the 2007 IEEE International Conference on Image Processing. San Antonio, USA:IEEE, 2007: I-273-I-276.
[4]  SFIKAS G, NIKOU C, GALATSANOS N, et al. MR brain tissue classification using an edge-preserving spatially variant Bayesian mixture model[J].Medical Image Computing and Computer-assisted Intervention-MICCAI 2008, 2008, 11(1):43-50.
[5]  NIKOU C, LIKAS A C, GALATSANOS N P. A Bayesian framework for image segmentation with spatially varying mixtures[J].IEEE Transactions on Image Processing, 2010, 19(9):2278-2289.
[6]  ASHBURNER J, FRISTON K J. Unified segmentation[J].Neuroimage, 2005, 26(3):839-851.
[7]  JI Z, XIA Y, SUN Q, et al. Adaptive scale fuzzy local Gaussian mixture model for brain MR image segmentation[J].Neurocomputing, 2014, 134(6):60-69.
[8]  SHAO G, GAO J, WANG T, et al. Fuzzy c-means clustering with a new regularization term for image segmentation[C] //Proceedings of the 2014 International Joint Conference on Neural Networks(IJCNN).Beijing, China:IEEE, 2014: 2862-2869.
[9]  NGUYEN T M, WU Q M J. Gaussian-mixture-model-based spatial neighborhood relationships for pixel labeling problem[J].IEEE Transactions on Systems,Man and Cybernetics, Part B(Cybernetics), 2012, 42(1):193-202.
[10]  ZHANG Y, BRADY M, SMITH S. Segmentation of brain MR images through a hidden Markov random field model and the expectation-maximization algorithm [J].IEEE Transactions on Medical Imaging, 2001, 20(1):45-57.
[11]  GREENSPAN H, RUF A, GOLDBERGER J. Constrained Gaussian mixture model framework for automatic segmentation of MR brain images[J]. IEEE Transactions on Medical Imaging, 2006, 25(9):1233-1245.
[12]  SONG Y, JI Z, SUN Q. An extension Gaussian mixture model for brain MRI segmentation[J]. Conference: International Conference of the IEEE Engineering in Medicine & Biology Society IEEE Engineering in Medicine & Biology Society Conference. Conf Proc IEEE Eng Med Biol Soc, 2014:4711-4714.
[13]  SKIBBE H, REISERT M, BURKHARDT H. Gaussian neighborhood descriptors for brain segmentation [C] //Proceedings of the 12th IAPR Conference on Machine Vision Applications(MVA 2011). Nara, Japan: IAPR, 2011:35-38.
[14]  SFIKAS G, NIKOU C, GALATSANOS N, et al. Spatially varying mixtures incorporating line processes for image segmentation[J].Journal of Mathematical Imaging and Vision, 2010, 36(2):91-110.
[15]  DIPLAROS A, VLASSIS N, GEVERS T. A spatially constrained generative model and an EM algorithm for image segmentation[J].IEEE Transactions on Neural Networks, 2007, 18(3):798-808.
[16]  NIKOU C, GALATSANOS N P, LIKAS A C. A class-adaptive spatially variant mixture model for image segmentation[J].IEEE Transactions on Image Processing, 2007, 16(4):1121-1130.
[17]  BLEKAS K, LIKAS A, GALATSANOS N P, et al. A spatially constrained mixture model for image segmentation[J].IEEE Transactions on Neural Networks, 2005, 16(2):494-498.
[18]  NGUYEN T M, WU Q M J. Robust student's-t mixture model with spatial constraints and its application in medical image segmentation[J].IEEE Transactions on Medical Imaging, 2012, 31(1):103-116.
[19]  DONG F, PENG J. Brain MR image segmentation based on local Gaussian mixture model and nonlocal spatial regularization[J].Journal of Visual Communication & Image Representation, 2014, 25(5):827-839.
[20]  PEEL D, MCLACHLAN G J. Robust mixture modeling using the t distribution[J].Statistics & Computing, 2000, 10(4):339-348.
[21]  NGUYEN T M, WU Q M J. Fast and robust spatially constrained Gaussian mixture model for image segmentation[J].IEEE Transactions on Circuits & Systems for Video Technology, 2013, 23(4):621-635.
[22]  CHATZIS S P, VARVARIGOU T A. A fuzzy clustering approach toward hidden Markov random field models for enhanced spatially constrained image segmentation[J].IEEE Transactions on Fuzzy Systems, 2008, 16(5):1351-1361.
[23]  JI J, WANG K L. A fuzzy clustering algorithm with robust spatially constraint for brain MR image segmentation[C] //Proceedings of the 2014 IEEE International Conference on Fuzzy Systems(FUZZ-IEEE).Beijing, China:IEEE, 2014:202-209.
[24]  JI Z, LIU J, CAO G, et al. Robust spatially constrained fuzzy c-means algorithm for brain MR image segmentation[J].Pattern Recognition, 2014, 47(7):2454-2466.
[25]  江贵平, 秦文健, 周寿军,等. 医学图像分割及其发展现状[J].计算机学报, 2015, 38(6):1222-1242. JIANG Guiping, QIN Wenjia, ZHOU Shoujun, et al. State-of-the-art in medical image segmentation [J]. Chinese Journal of Computers, 2015, 38(6):1222-1242.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133