全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2017 

时滞复杂动态网络的有限时间随机广义外部同步
Finite-time stochastic generalized outer synchronization of time-delayed complex dynamical networks

DOI: 10.6040/j.issn.1672-3961.0.2016.320

Keywords: 噪声,同步,复杂网络,时滞,
complex networks
,noise,synchronization,time delay

Full-Text   Cite this paper   Add to My Lib

Abstract:

摘要: 基于有限时间控制技术以及开环控制技术,研究具有噪声干扰的时滞复杂动态网络的有限时间广义外部同步问题。设计新的有限时间控制器,利用随机微分方程的稳定性理论得到网络实现有限时间随机广义外部同步的充分条件。研究表明:设计的控制器对于噪声干扰具有较强的鲁棒性,且网络同步时间与控制强度密切相关。在其他条件不变的情况下,网络同步时间随着控制强度的增大而减小。数值模拟中分别选择R(¨overo)ssler-like系统和Hindmarsh-Rose系统作为驱动网络与响应网络的节点动力学,给出了网络同步误差和总同步误差的演化轨迹。数值模拟结果验证了理论结果的有效性与可行性。
Abstract: Based on the finite-time control technology and the open-loop control method, the generalized outer synchronization between two complex dynamical networks with time delay and noise perturbation was investigated. A new finite-time controller was designed and the sufficient condition for the finite-time stochastic generalized outer synchronization was obtained based on the finite-time stability theory of stochastic differential equations. The results showed that the synchronization scheme was robust to the noise perturbation. The theoretical results showed that the synchronization time depended on the control strength. Under the same conditions, the synchronization time decreased with the increasing of the control strength. In the numerical examples, the R(¨overo)ssler-like system and Hindmarsh-Rose system were chosen as the node dynamics of the drive and response networks, respectively. The time evolution trajectories of synchronization error and total synchronization error were given. The effectiveness and feasibility of the theoretical result was confirmed by the numerical results

References

[1]  WATTS D J, STROGATZ S H. Collective dynamics of small-world networks[J]. Nature, 1998, 393(6684): 440-442.
[2]  孙美美, 胡云安, 韦建明. 多涡卷超混沌系统自适应滑模同步控制[J]. 山东大学学报(工学版), 2015, 45(6): 45-51. SUN Meimei, HU Yunan, WEI Jianming. Synchronization of multiwing hyperchaotic systems via adaptive sliding mode control[J]. Journal of Shandong University(Engineering Science), 2015, 45(6): 45-51.
[3]  LI Changpin, SUN Weigang, KURTHS J. Synchronization between two coupled complex networks[J]. Physical Review E, 2007, 76(4):046204
[4]  WU Xiaoqun, ZHENG Weixing, ZHOU Jin. Generalized outer synchronization between complex dynamical networks[J]. Chaos, 2009, 19(1): 013109.
[5]  SUN Weigang, LI Shixing. Generalized outer synchronization between two uncertain dynamical networks[J]. Nonlinear Dynamics, 2014, 77(3): 481-489.
[6]  WANG Guanjun,CAO Jinde,LU Jianquan. Outer synchronization between two identifical networks with circumstance noice[J]. Physica A, 2010, 389(7): 1480-1488.
[7]  赵永清,江明辉. 混合变时滞二重边复杂网络自适应同步反馈控制[J]. 山东大学学报(工学版),2010, 40(3): 61-68. ZHAO Yongqing, JIANG Minghui. Adaptive synchronous feedback control of mixed time-varying delayed and double-linked complex networks[J]. Journal of Shandong University(Engineering Science), 2010, 40(3):61-68.
[8]  周璇, 谭满春, 田文秀. 双重时滞和非时滞耦合的复杂网络同步研究[J]. 计算机工程与应用, 2015, 51(10):30-35. ZHOU Xuan, TAN Manchun, TIAN Wenxiu. Research on synchronization of complex network with double delayed and double non-delayed coupling[J]. Computer Engineering and Applications, 2015, 51(10):30-35.
[9]  SANJAY P B, DENNIS S B. Finite-time stability of continuous autonomous systems[J]. SIAM Journal on Applied Mathematics, 2000, 38(3):751-766.
[10]  ?KSENDAL B. Stochastic differential equations[M]. New York: Springer-Verlag Heidelberg, 2000.
[11]  LIN Wei, CHEN Guanrong. Using white noise to enhance synchronization of coupled chaotic systems[J]. Chaos, 2006, 16(1): 013134.
[12]  SUN Yongzheng, SHI Hongjun, BAKARE E A, et al. Noise-induced outer synchronization between two different complex dynamical networks[J]. Nonlinear Dynamics, 2014, 76(1): 519-528.
[13]  HUANG Junjian, LI Chuandong, HUANG Tingwen, et al. Finite-time lag synchronization of delayed neural networks[J]. Neurocomputing, 2014, 139(13):145-149.
[14]  ARENAS A, DAZ-GUILERA A, KURTHS J, et al. Synchronization in complex networks[J]. Physics Reports, 2008, 469(3): 93-153.
[15]  SUN Yongzheng, LI Wang, RUAN Jiong. Generalized outer synchronization between complex dynamic networks with time delay and noise perturbation[J]. Communications in Nonlinear Science & Numerical Simulation, 2013, 18(4): 989-998.
[16]  马奎森, 王林山. S-分布时滞随机BAM神经网络的指数同步[J]. 山东大学学报(理学版), 2014, 49(3): 73-78. MA Kuisen, WANG Linshan. Exponential synchronization of stochastic BAM neural networks with S-type distributed delays[J]. Journal of Shandong University(Natural Science), 2014, 49(3): 73-78.
[17]  HAUSCHILDT B, JASON N B, BALANOV A, et al. Noise-induced cooperative dynamics and its control in coupled neuron models[J]. Physical Review E, 2006, 74(5): 051906.
[18]  KORNISS G. Synchronization in weighted uncorrelated complex networks in a noisy environment: optimization and connections with transport efficiency[J]. Physical Review E, 2007, 75(75): 051121.
[19]  李望,石咏,马继伟. 复杂动力学网络的有限时间外部同步[J].山东大学学报(工学版),2013,43(2):48-53. LI Wang, SHI Yong, MA Jiwei. Finite-time outer synchronization of complex dynamical networks[J]. Journal of Shandong University(Engineering Science), 2013, 43(2):48-53.
[20]  WANG Hua, HAN Zhengzhi, XIE Qiyue, et al. Finite-time chaos control via nonsingular terminal sliding mode control[J]. Communications in Nonlinear Science & Numerical Simulation, 2009, 14(6):2728-2733.
[21]  YANG Xinsong, CAO Jinde. Finite-time stochastic synchronization of complex networks[J]. Applied Mathematical Modelling, 2010, 34(11): 3631-3641.
[22]  HARDY G, LITTLEWOOD J, POLYA G. Inequalities[M]. Cambridge:Cambridge University Press, 1952.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133