|
- 2017
基于自适应流形相似性的图像显著性区域提取算法
|
Abstract:
摘要: 为了在图像显著性区域提取过程中改善算法的自适应性和精准度,提出基于自适应流形相似性的图像显著性区域检测算法。将图像分割成超像素,根据图像中显著性区域频率变化比较大的特性,生成图像显著性区域的高频节点;针对高频节点利用凸包运算寻找显著性区域的种子节点;使用流形算法在图像中对种子节点进行显著性区域信息扩散,得到图像的显著性区域。试验结果表明:利用流形算法搭建求解每个数据的邻接矩阵进行信息扩散,能够在保证信息精准分类的同时提高算法的自适应性,其结果优于同类的图像显著性区域检测算法。
Abstract: In order to improve the adaptability and precision in extracting salient regions in images, an image salient region detection algorithm was proposed based on adaptive manifold similarity. An input image was segmented into super-pixels which were represented as the nodes in a graph. The node with high frequency was generated by the characteristics of the salient regions. Convex hull computation was used to generate the saliency seeds of the salient object area according to high-frequency nodes. The proposed algorithm was used to complete information reconstruction of the current image by adaptively assessing the salient weights on the edges between the nodes. In addition, based on local characteristics information reconstruction, the proposed algorithm utilized similarity extraction function to self-adaptively obtain the similarity characteristics and manifold structures in order to spread salient characteristics information. The experimental results showed that the quadratic programming solution exploited to compute the weights between the nodes could effectively avoid threshold selection and enhance robustness accordingly, and the proposed method performed better than the other state-of-the-art methods
[1] | WANG Tiantian, XIU Chunbo, CHENG Yi. Vehicle recognition based on saliency detection and color histogram[C] //Proceedings of the 27th Chinese Control and Decision Conference(2015CCDC). Qingdao, China:IEEE, 2015:2532-2535. |
[2] | LINDEBERG T. Scale-Space Theory in Computer Vision[M].New York, USA:Springer International, 1994:349-382. |
[3] | 王秀芬, 王汇源, 王松. 基于背景差分法和显著性图的海底目标检测方法[J]. 山东大学学报(工学版), 2011, 41(1):12-16. WANG Xiufen, WANG Huiyuan, WANG Song. Underwater object detection based on background subtraction and a saliency map[J]. Journal of Shandong University(Engineering Science), 2011, 41(1):12-16. |
[4] | ACHANTA R, SHAJI A, SMITH K, et al. SLIC superpixels compared to state-of-the-art superpixel methods[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2012, 34(11):2274-2282. |
[5] | ZHU X J, GHAHRAMANI Z, LAFFERTY J D. Semi-supervised learning using Gaussian fields and harmonic functions [C] //Proceedings of the 20th International Conference on Machine Learning(ICML).Washington DC, USA:IEEE, 2003(2):912-919. |
[6] | 任永峰, 周静波. 基于信息弥散机制的图像显著性区域提取算法[J]. 山东大学学报(工学版), 2015(6):1-6. REN Yongfeng, ZHOU Jingbo. An image saliency object detection algorithm based on information diffusion[J]. Journal of Shandong University(Engineering Science), 2015(6):1-6. |
[7] | XIE Y, LU H, YANG M. Bayesian saliency via low and mid-level cues[J]. IEEE Transactions on Image Processing, 2013, 22(5):1689-1698. |
[8] | YAN Q, XU L, SHI J, et al. Hierarchical saliency detection[C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). Portland, USA:IEEE, 2013:1155-1162. |
[9] | SHEN X, WU Y. A unified approach to salient object detection via low rank matrix recovery[C] //Proceedings of the 2012 IEEE Conference on Computer Vision and Pattern Recognition(CVPR). Providence, USA:IEEE, 2012:853-860. |
[10] | THIMBLEBY H. Press on-principles of interaction programming[M].Massachusetts, USA:The MIT Press, 2007:224-271. |
[11] | 李春雷, 张兆翔, 刘洲峰. 基于纹理差异视觉显著性的织物疵点检测算法[J]. 山东大学学报(工学版),2014,44(4):1-8. LI Chunlei, ZHANG Zhaoxiang, LIU Zhoufeng. A novel fabric defect detection algorithm based on textural differential visual saliency model[J]. Journal of Shandong University(Engineering Science), 2014, 44(4):1-8. |
[12] | GRETTON A, BORGWARD K M, RASCH M J, et al. A kernel method for the two-sample-problem[C] //Proceedings of the Advances in Neural Information Processing Systems. Vancouver, Canada:NIPS, 2007:513-520. |
[13] | VAN D W J, GEVERS T, BAGDANOV A D. Boosting color saliency in image feature detection[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2006, 28(1):150-156. |
[14] | MARGOLIN R, TAL A, ZELNIK-MANOR L. What makes a patch distinct? [C] // Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition. Sydney, Australia:IEEE, 2013:1139-1146. |
[15] | ROTHER C, KOLMOGOROV V, BLAKE A. Grab cut interactive foreground extraction using iterated graph cuts[C] //Proceedings of the ACM Transactions on Graphics. New York, USA:ACM, 2004, 23(3):309-314. |
[16] | ZHU J Y, WU J, XU Y, et al. Unsupervised object class discovery via saliency-guided multiple class learning[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2015, 37(4):862-875. |
[17] | SUN J, LU H, LIU X. Saliency region detection based on markov absorption probabilities[J]. IEEE Transactions on Image Processing, 2015, 24(5):1639-1649. |
[18] | LI X, LU H, ZHANG L, et al. Saliency detection via dense and sparse reconstruction [C] //Proceedings of the 2013 IEEE International Conference on Computer Vision(ICCV). Sydney, Australia:IEEE, 2013:2976-2983. |
[19] | SANG Nong, WEI Longsheng, WANG Yuehuan. A biologically-inspired top-down learning model based on visual attention[C] //Proceedings of the International Conference on Pattern Recognition(ICPR)Istanbul. Turkey:IEEE, 2010:3736-3739. |
[20] | LYU Jiayong, TANG Zhenmin, XU Wei. Improved bayesian saliency detection based on bing and graph model[J]. Open Cybernetics & Systemics Journal, 2015, 9(1):648-656. |
[21] | QIN C, ZHANG G, ZHOU Y, et al. Integration of the saliency-based seed extraction and random walks for image segmentation[J]. Neurocomputing, 2014, 129(4):378-391. |
[22] | CHANG K Y, LIU T L, CHEN H T, et al. Fusing generic objectness and visual saliency for salient object detection[C] //Proceedings of the 2011 International Conference on Computer Vision(ICCV). Barcelona, Spain:IEEE, 2011:914-921. |
[23] | 任永峰, 周静波, 王志坚. 基于光线变化的显著性区域提取[J]. 南京大学学报(自然科学版), 2015, 51(1):125-131. REN Yongfeng, ZHOU Jingbo, WANG Zhijian. A saliency detection base on the change of light[J]. Journal of Nanjing University(Natural Sciences), 2015, 51(1):125-131. |
[24] | LIU T, YUAN Z, SUN J, et al. Learning to detect a salient object[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 2011, 33(2):353-367. |
[25] | SEO H J, MILANFAR P. Nonparametric bottom-up saliency detection by self-resemblance[C] //Proceedings of the 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops. Miami, USA:IEEE, 2009:45-52. |
[26] | JUNG C, KIM C. A unified spectral-domain approach for saliency detection and its application to automatic object segmentation[J]. IEEE Transactions on Image Processing, 2012, 21(3):1272-1283. |
[27] | LAAR Van De P, HESKES T, GIELEN S. Task-dependent learning of attention[J]. Neural Networks, 1997, 10(6):981-992. |
[28] | LI Y, MA Y F, ZHANG H J. Salient region detection and tracking in video[C] //Proceedings of the 2003 International Conference on Multimedia and Expo. Baltimore, USA:IEEE Computer Society, 2003(2):269-272. |
[29] | JIANG H, WANG J, YUAN Z, et al. Salient object detection:a discriminative regional feature integration approach[C] //Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition(CVPR). Portland, USA: IEEE, 2013:2083-2090. |
[30] | WANG L, XUE J, ZHENG N, et al. Automatic salient object extraction with contextual cue[C] //Proceedings of the 2011 International Conference on Computer Vision(ICCV). Barcelona, Spain:IEEE, 2011:105-112. |