全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2018 

自适应特征选择加权k子凸包分类
Weighted k sub-convex-hull classifier based on adaptive feature selection

DOI: 10.6040/j.issn.1672-3961.0.2017.415

Keywords: 加权k子凸包,度量学习,正则化,特征选择,自适应,
weighted k sub-convex-hull classifier
,distance metric learning,regularization,feature selection,adaptive

Full-Text   Cite this paper   Add to My Lib

Abstract:

针对问题维数的增加以及不同特征对分类的作用往往不一样,导致k子凸包分类性能降低等问题,设计自适应特征选择加权k子凸包分类方法。根据传统凸包距离存在的不足引入加权k子凸包距离,在测试样本的k邻域内引入距离度量学习技术和正则化技术进行自适应的特征选择,并将自适应特征选择无缝嵌入加权k子凸包优化模型中,这样就能为不同的测试样本在不同的类别中学习自适应特征空间,得到有效的加权k子凸包距离计算方法。试验结果表明,该方法不仅能够进行降维,而且具有明显的分类性能优势。
Because of the increase of the dimension of the problem and the effect of different features on classifier, the performance of the k sub-convex-hull classifier was seriously reduced. An adaptive feature selection weighted k sub-convex-hull classifier was designed (AWCH). A weighted k sub-convex-hull classifier was designed according to the shortcomings of conventional convex hull distance. By applying the distance metric learning and regularization technique in the k neighborhood of the test sample, an adaptive feature selection method was designed and seamlessly integrated into the optimization model on the weighted k sub-convex-hull. Through these efforts, for different test samples, an adaptive feature space in different categories could be extracted, and a valid weighted k sub-convex-hull distance could be obtained. Experimental results showed that the AWCH not only reduced the dimension of the problem, but also was significantly superior to similar classifiers.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133