全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

代谢组学数据正态性对疾病分类准确性的影响
Influence of normality of metabolomics data on the classification accuracy of diseases

DOI: 10.6040/j.issn.1671-7554.0.2015.1186

Keywords: 数据正态性,分类准确率,Bayes判别,偏最小二乘判别分析,支持向量机,Fisher判别,随机森林,
Data Normality
,Classification Accuracy,Bayes Discrimination,Fisher Discrimination,Random Forest,Partial Least Squares Discrimination Analysis,Support Vector Machine

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  王璐,张涛,刘佳,等. 模糊聚类法在动态设计组学数据趋势聚类中的应用[J].中国卫生统计,2015, 32(1): 2-5. WANG Lu, ZHANG Tao, LIU Jia, et al. Clustering the dynamic profile of dynamic omics data using soft clustering Method[J]. Chinese Journal of Health Statistics, 2015, 32(1): 2-5.
[2]  Worley B, Powers R. Multivariate analysis in metabolomics[J]. Curr Metabolomics, 2013, 1(1): 92-107.
[3]  Collino S, Martin FP, Rezzi S, et al. Clinical metabolomics paves the way towards future healthcare strategies[J]. Br J Clin Pharmacol, 2013, 75(3): 619-629.
[4]  Wettersten HI, Weiss RH. Applications of metabolomics for kidney disease research: from biomarkers to therapeutic targets[J]. Organogenesis, 2013, 9(1): 11-18.
[5]  Xia J, Broadhurst DI, Wilson M, et al. Translational biomarker discovery in clinical metabolomics: an introductory tutorial[J]. Metabolomics, 2013, 9(2): 280-299.
[6]  Gu HW, Pan ZZ, Xi B, et al. Principal component directed partial least squares analysis for combining NMR and MS data in metabolomics: application to the detection of breast cancer[J]. Anal Chim Acta, 2011, 686(1-2): 57-63.
[7]  Tokushige K, Hashimoto E, Kodama K, et al. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease[J]. Gastroenterol, 2013, 48(12): 1392-1400.
[8]  Parsons HM, Ludwig C, Gunther UL, et al. Improved classification accuracy in 1- and 2-dimensional NMR metabolomics data using the variance stabilising generalised logarithm transformation[J]. BMC Bioinformatics, 2007, 8: 234. doi:10.1186/1471-2105-8-234.
[9]  Muncey HJ, Jones R, De Iorio M, et al. MetAssimulo: simulation of realistic NMR metabolic profiles[J]. BMC Bioinformatics, 2010, doi:10.1186/1471-2105-11-496.
[10]  van den Berg RA, Hoefsloot HC, Westerhuis JA, et al. Centering, scaling, and transformations: improving the biological information content of metabolomics data[J]. BMC Genomics, 2006, doi:10.1186/1471-2164-7-142.
[11]  Yang J, Zhao X, Lu X, et al. A data preprocessing strategy for metabolomics to reduce the mask effect in data analysis[J]. Front Mol Biosci, 2015, 2: 4. doi: 10.3389/fmolb.2015.00004
[12]  Mitchell MW. A comparison of aggregate p-value methods and multivariate statistics for self-contained tests of metabolic pathway analysis[J]. PLoS One, 2015, 10(4): e0125081. doi:10. 1371/journal.pone.0125081.
[13]  Guan W, Zhou M, Hampton CY, et al. Ovarian cancer detection from metabolomic liquid chromatography/mass spectrometry data by support vector machines[J]. BMC Bioinformatics, 2009, 10: 259. doi:10.1186/1471-2105-10-259.
[14]  Szymanska E, Saccenti E, Smilde AK, et al. Double-check: validation of diagnostic statistics for PLS-DA models in metabolomics studies[J]. Metabolomics, 2012, 8(Suppl 1): 3-16.
[15]  Marengo E, Robotti E. Biomarkers for pancreatic cancer: recent achievements in proteomics and genomics through classical and multivariate statistical methods[J]. World J Gastroenterol, 2014, 20(37): 13325-13342.
[16]  Wood PL. Mass spectrometry strategies for clinical metabolomics and lipidomics in psychiatry, neurology, and neuro-oncology[J]. Neuropsychopharmacology, 2014, 39(1): 24-33.
[17]  Chen TL, Yu C, Zhang YN, et al. Random Forest in clinical metabolomics for phenotypic discrimination and biomarker selection[J]. Evid Based Complement Alternat Med, 2013:298183. doi:10.1155/2013/298183. Epub 2013 Feb 2.
[18]  刘盈君,张涛,王璐,等. 基于随机森林的精神分裂症血清代谢组学研究[J].山东大学学报(医学版),2015,53(2):92-96. LIU Yingjun, ZHANG Tao, WANG Lu, et al. Serum metabolic profiling of schizophrenia based on random forest[J]. Journal of Shandong University(Health Sciences), 2015, 53(2): 92-96.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133