全部 标题 作者
关键词 摘要

OALib Journal期刊
ISSN: 2333-9721
费用:99美元

查看量下载量

相关文章

更多...
-  2016 

SIR模型在成人麻疹爆发及其疫情控制评价中的应用
Use of SIR model in evaluation of control measures for adults measles outbreak

DOI: 10.6040/j.issn.1671-7554.0.2016.042

Keywords: 传染病动力学模型,麻疹,SIR模型,基础再生数,马尔科夫蒙特卡洛,
Mathematical models of infectious diseases
,Measles,SIR Model,Basic Reproduction Number,Markov Chain Monte Carlo

Full-Text   Cite this paper   Add to My Lib

Abstract:

References

[1]  Haario H, Saksman E,Tamminen J. An adaptive Metropolis algorithm[J]. Bernoulli, 2001, 7(2): 223-242.
[2]  Grassly NC, Fraser C. Mathematical models of infectious disease transmission[J]. Nat Rev Micro, 2008, 6(6): 477-487.
[3]  Sood N, Wagner Z, Jaycocks A, et al. Test-and-treat in Los Angeles: a mathematical model of the effects of test-and-treat for the population of men who have sex with men in Los Angeles County[J]. Clin Infect Dis, 2013, 56(12): 1789-1796.
[4]  张秀敏. 一起成人麻疹爆发调查及其控制效果评价[D]. 济南: 山东大学, 2006.
[5]  Roberts MG, Tobias MI. Predicting and preventing measles epidemics in New Zealand: application of a mathematical model[J]. Epidemiol Infect, 2000, 124(2): 279-287.
[6]  Hamborsky J, Kriger K,Wolfe C. Epidemiology and prevention of vaccine-preventable diseases[M]. Washington: Centers for Disease Control and Prevention, 2015.
[7]  Haario H, Laine M, Mira A, et al. DRAM: Efficient adaptive MCMC[J]. Statist Comput, 2006, 16(4): 339-354.
[8]  Durrheim D, Crowcroft N, Strebel P. Measles — The epidemiology of elimination[J]. Vaccine, 2014, 32(51): 6880-6883.
[9]  Fred B, Pauline D, Jianhong W. Mathematical epidemiology[M]. Heidelberg: Springer-Verlag, 2008.
[10]  马超, 苏琪茹, 郝利新, 等. 中国2012~2013年麻疹流行病学特征与消除麻疹进展[J]. 中国疫苗和免疫, 2014, 20(3): 193-199. MA Chao, SU Qiru, HAO Lixin, et al. Measles epidemiology characteristics and progress toward measles elimination in China[J]. Chinese Journal of Vaccines and Immunization, 2014, 20(3): 193-199.
[11]  马知恩,周义仓,王稳地,等. 传染病动力学的数学建模与研究[M]. 北京: 科学出版社, 2006.
[12]  Chowell G, Blumberg S, Simonsen L, et al. Synthesizing data and models for the spread of MERS-CoV, 2013: key role of index cases and hospital transmission[J]. Epidemics, 2014, 9: 40-51, doi:10.1016/j.epidem.2014.09.011.
[13]  许青, 徐爱强, 宋立志, 等. 一起成人麻疹爆发调查及其流行因素分析[J]. 中国计划免疫, 2007, 13(5): 440-443. XU Qing, XU Aiqiang, SONG Lizhi, et al. Epidemiological analysis on measles outbreak among adults[J]. Chinese Journal of Vaccines and Immunization, 2007, 13(5): 440-443.
[14]  Morton A, Finkenst?dt BF. Discrete time modelling of disease incidence time series by using Markov chain Monte Carlo methods[J]. J Roy Statist Soc Ser C, 2005, 54(3): 575-594.
[15]  史建国,葛玉蕾. 麻疹疫苗应急接种控制爆发流行的效果[J]. 中华疾病控制杂志, 2002, 6(2): 147-148. SHI Jianguo, GE Yulei. Analysis of the control effect on outbreak and epidemic of measle with measle vaccine emergency vaccination[J]. Chinese Journal of Disease Control & Prevention, 2002, 6(2): 147-148.
[16]  Appanna T, Aundhakar U. Parameter estimation of SIR epidemic model using MCMC methods[J]. Global J Pure Appl Math, 2016, 12(2): 1299-1306.
[17]  Bonacic Marinovic AA, Swaan C, Wichmann O, et al. Effectiveness and timing of vaccination during School measles outbreak[J]. Emerg Infect Dis, 2012, 18(9): 1405-1413.
[18]  Pandey A. Modelling dengue transmission and vaccination[D]. Clemson: Clemson University, 2014.
[19]  马超, 中国麻疹流行病学与消除麻疹免疫策略研究[D]. 北京: 中国疾病预防控制中心, 2014.

Full-Text

Contact Us

service@oalib.com

QQ:3279437679

WhatsApp +8615387084133