|
- 2018
原始卵泡的激活与临床应用
|
Abstract:
[1] | John GB, Shirley LJ, Gallardo TD, et al. Specificity of the requirement for Foxo3 in primordial follicle activation[J]. Reprod, 2007, 133(5): 855-863. |
[2] | Pangas SA, Choi Y, Ballow DJ, et al. Oogenesis requires germ cell-specific transcriptional regulators Sohlh1 and Lhx8[J]. Proc Natl Acad Sci U S A, 2006, 103(21): 8090-8095. |
[3] | Choi Y, Yuan D, Rajkovic A. Germ cell-specific transcriptional regulator sohlh2 is essential for early mouse folliculogenesis and oocyte-specific gene expression[J]. Biol of Reprod, 2008, 79(6): 1176-1182. |
[4] | Nilsson EE, Skinner MK. Kit ligand and basic fibroblast growth factor interactions in the induction of ovarian primordial to primary follicle transition[J]. Mol Cell Endocrinol, 2004, 214(1-2): 19-25. |
[5] | Ren Y, Suzuki H, Jagarlamudi K, et al. Lhx8 regulates primordial follicle activation and postnatal folliculogenesis[J]. BMC Biol, 2015, 13: 39. |
[6] | Jagarlamudi K, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten in mice reveals a stage-specific function of PTEN/PI3K signaling in oocytes in controlling follicular activation[J]. PLoS One, 2009, 4(7): 6186. doi:10.1371/journal.pone.0006186. |
[7] | Adhikari D, Liu K. Molecular mechanisms underlying the activation of mammalian primordial follicles[J]. Endocr Rev, 2009, 30(5): 438-464. |
[8] | Byskov AG, Guoliang X, Andersen CY. The cortex-medulla oocyte growth pattern is organized during fetal life: an in-vitro study of the mouse ovary[J]. Mol Hum Reprod, 1997, 3(9): 795-800. |
[9] | Taga M, Mouton-Liger F, Paquet C, et al. Modulation of oxidative stress and tau phosphorylation by the mTOR activator phosphatidic acid in SH-SY5Y cells[J]. Febs Letters, 2011, 585(12): 1801-1806. |
[10] | Halder G, Johnson RL. Hippo signaling: growth control and beyond[J]. Development, 2011, 138(1): 9-22. |
[11] | Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles[J]. Hum Mol Genet, 2010, 19(3): 397-410. |
[12] | Lechowska A, Bilinski S, Choi Y, et al. Premature ovarian failure in nobox-deficient mice is caused by defects in somatic cell invasion and germ cell cyst breakdown[J]. J Assist Reprod Genet, 2011, 28(7): 583-589. |
[13] | Schmidt D, Ovitt CE, Anlag K, et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance[J]. Development, 2004, 131(4): 933-942. |
[14] | Choi Y, Ballow DJ, Xin Y, et al. Lim Homeobox Gene, Lhx8, is essential for mouse oocyte differentiation and survival[J]. Biol Reprod, 2008, 79(3): 442-449. |
[15] | Zhang H, Liu K. Cellular and molecular regulation of the activation of mammalian primordial follicles: somatic cells initiate follicle activation in adulthood[J]. Hum Reprod Update, 2015, 21(6):779-786. |
[16] | Rajareddy S, Reddy P, Du C, et al. p27kip1(cyclin-dependent kinase inhibitor 1B)controls ovarian development by suppressing follicle endowment and activation and promoting follicle atresia in mice[J]. Mol endocrinol, 2007, 21(9): 2189-2202. |
[17] | Hezel AF, Bardeesy N. LKB1; linking cell structure and tumor suppression[J]. Oncogene, 2008, 27(55): 6908-6919. |
[18] | Hemminki A, Avizienyte E, Roth S, et al. A serine/threonine kinase gene defective in Peutz-Jeghers syndrome[J]. Duodecim, 1998, 114(7): 667-668. |
[19] | Mazaud S, Oréal E, Guigon CJ, et al. Lhx9 expression during gonadal morphogenesis as related to the state of cell differentiation[J]. Gene Expr Patterns, 2002, 2(3-4): 373-377. |
[20] | Qin Y, Zhao H, Kovanci E, et al. LHX8 mutation analysis in premature ovarian failure[J]. Fertil Steril, 2008, 89(4): 1012-1014. |
[21] | Nilsson E, Parrott JA, Skinner MK. Basic fibroblast growth factor induces primordial follicle development and initiates folliculogenesis[J]. Mol Cell Endocrinol, 2001, 175(1-2): 123-130. |
[22] | Lu X, Guo S, Cheng Y, et al. Stimulation of ovarian follicle growth after AMPK inhibition[J]. Reproduction, 2017, 153(5): 683-694. |
[23] | Liu L, Rajareddy S, Reddy P, et al. Infertility caused by retardation of follicular development in mice with oocyte-specific expression of Foxo3a[J]. Development, 2007, 134(1): 199-209. |
[24] | John GB, Gallardo TD, Shirley LJ, et al. Foxo3 is a PI3K-dependent molecular switch controlling the initiation of oocyte growth[J]. Dev Biol, 2008, 321(1):197-204. |
[25] | Hergovich A. Mammalian Hippo signalling: a kinase network regulated by protein-protein interactions[J]. Biochem Soc Trans, 2012, 40(1): 124-128. |
[26] | Peters H. The development of the mouse ovary from birth to maturity[J]. Acta Endocrinol, 1969, 62(1): 98-116. |
[27] | Reddy P, Liu L, Adhikari D, et al. Oocyte-specific deletion of Pten causes premature activation of the primordial follicle pool[J]. Science, 2008, 319(5863): 611-613. |
[28] | Castrillon DH, Miao L, Kollipara R, et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a[J]. Science, 2003, 301(5630): 215-218. |
[29] | Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism[J]. Cell, 2006, 124(3): 471-484. |
[30] | Laplante M, Sabattini DM. mTOR signaling at a glance[J]. J Cell Sci, 2009, 122(20):3589-3594. |
[31] | Motro B, Bernstein A. Dynamic changes in ovarian c-kit and Steel expression during the estrous reproductive cycle[J]. Dev Dyn, 1993, 197(1): 69-79. |
[32] | Shackelford DB, Shaw RJ. The LKB1-AMPK pathway: metabolism and growth control in tumor suppression[J]. Nat Rev Cancer, 2009, 9(8): 563-575. |
[33] | Maheshwari A, Fowler PA. Primordial follicular assembly in humans-revisited[J]. Zygote, 2008, 16(4): 285-296. |
[34] | Grive KJ, Freiman RN. The developmental origins of the mammalian ovarian reserve[J]. Dev, 2015, 142(15): 2554-2563. |
[35] | Choi Y, Qin Y, Berger MF, et al. Microarray analyses of newborn mouse ovaries lacking Nobox[J]. Biol of Reprod, 2007, 77(2): 312-319. |
[36] | Oley C, Baraitser M. Blepharophimosis, ptosis, epicanthus inversus syndrome(BPES syndrome)[J]. J Med Genet, 1988, 25(1): 47-51. |
[37] | Durlinger AL, Gruijters MJ, Kramer P, et al. Anti-Müllerian hormone inhibits initiation of primordial follicle growth in the mouse ovary[J]. Endocrinology, 2002, 143(3): 1076-1084. |
[38] | Qin Y, Jiao X, Simpson JL, et al. Genetics of primary ovarian insufficiency: new developments and opportunities[J]. Hum Reprod Update, 2015, 21(6): 787-808. |
[39] | Nakayama K, Ishida N, Shirane M, et al. Mice lacking p27(Kip1)display increased body size, multiple organ hyperplasia, retinal dysplasia, and pituitary tumors[J]. Cell, 1996, 85(5): 707-720. |
[40] | Ballow DJ, Xin Y, Choi Y, et al. Sohlh2 is a germ cell-specific bHLH transcription factor[J]. Gene Expr Patterns, 2006, 6(8): 1014-1018. |
[41] | Pangas SA, Rajkovic A. Transcriptional regulation of early oogenesis: in search of masters[J]. Hum Reprod Update, 2006, 12(1): 65-76. |
[42] | Toyoda S, Miyazaki T, Miyazaki S, et al. Sohlh2 affects differentiation of KIT positive oocytes and spermatogonia[J]. Dev Biol, 2009, 325(1): 238-248. |
[43] | Rajkovic A, Pangas SA, Ballow D, et al. NOBOX deficiency disrupts early folliculogenesis and oocyte-specific gene expression[J]. Science, 2004, 305(5687): 1157-1159. |
[44] | Ottolenghi C, Omari S, Garciaortiz JE, et al. Foxl2 is required for commitment to ovary differentiation[J]. Hum Mol Genet, 2005, 14(14): 2053-2062. |
[45] | Uda M, Ottolenghi C, Crisponi L, et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development[J]. Hum Mol Genet, 2004, 13(11): 1171-1181. |
[46] | Yu C, Zhang YL, Pan WW, et al. CRL4 complex regulates mammalian oocyte survival and reprogramming by activation of TET proteins[J]. Science, 2013, 342(6165): 1518-1521. |
[47] | Buratini J, Price CA. Follicular somatic cell factors and follicle development[J]. Reprod Fertil Dev, 2011, 23(1): 32-39. |
[48] | Henderson SA, Edwards RG. Chiasma frequency and maternal age in mammals[J]. Nature, 1968, 218(5136): 22-28. |
[49] | Zheng W, Zhang H, Gorre N, et al. Two classes of ovarian primordial follicles exhibit distinct developmental dynamics and physiological functions[J]. Hum Mol Genet, 2014, 23(4): 920-928. |
[50] | Broekmans FJ, Knauff EA, Valkenburg O, et al. PCOS according to the Rotterdam consensus criteria: Change in prevalence among WHO-II anovulation and association with metabolic factors[J]. BJOG, 2006, 113(10): 1210-1217. |
[51] | Li J, Kawamura K, Cheng Y, et al. Activation of dormant ovarian follicles to generate mature eggs[J]. Proc Natl Acad Sci U S A, 2010, 107(22): 10280-10284. |
[52] | Hornberger TA, Chu WK, Mak YW, et al. The role of phospholipase D and phosphatidic acid in the mechanical activation of mTOR signaling in skeletal muscle[J]. Proc Natl Acad Sci U S A, 2006, 103(12): 4741-4746. |
[53] | Xinhui S, Yiping S, Yuanlin H, et al. New strategy for in vitro activation of primordial follicles with mTOR and PI3K stimulators[J]. Cell Cycle, 2015, 14(5): 721-731. |
[54] | Farquhar C, Lilford RJ, Marjoribanks J, et al. Laparoscopic "drilling" by diathermy or laser for ovulation induction in anovulatory polycystic ovary syndrome[J]. Cochrane Database Syst Rev, 2005, 3(3): 1122. |
[55] | Johnson R, Halder G. The two faces of Hippo: targeting the Hippo pathway for regenerative medicine and cancer treatment[J]. Nat Rev Drug Discov, 2014, 13(1): 63-79. |
[56] | Kawamura K, Cheng Y, Suzuki N, et al. Hippo signaling disruption and Akt stimulation of ovarian follicles for infertility treatment[J]. Proc Natl Acad Sci U S A, 2013, 110(43): 17474-17479. |
[57] | Pan D. Hippo signaling in organ size control[J]. Gene Dev, 2007, 21(8): 886-897. |
[58] | Wada K, Itoga K, Okano T, et al. Hippo pathway regulation by cell morphology and stress fibers[J]. Development, 2011, 138(18): 3907-3914. |
[59] | Cheng Y, Feng Y, Jansson L, et al. Actin polymerization-enhancing drugs promote ovarian follicle growth mediated by the Hippo signaling effector YAP[J]. FASEB J, 2015, 29(6): 2423-2430. |
[60] | Hikabe O, Hamazaki N, Nagamatsu G, et al. Reconstitution in vitro of the entire cycle of the mouse female germ line[J]. Nature, 2016, 539(7628): 299-303. |
[61] | Morohaku K, Hirao Y, Obata Y. Development of fertile mouse oocytes from mitotic germ cells in vitro[J]. Nat Protoc, 2017, 12(9): 1817-1829. |
[62] | Zhang H, Risal S, Gorre N, et al. Somatic cells initiate primordial follicle activation and govern the development of dormant oocytes in mice[J]. Curr Biol, 2014, 24(21): 2501-2508. |
[63] | Kovanci E, Rohozinski J, Simpson JL, et al. Growth differentiating factor-9 mutations may be associated with premature ovarian failure[J]. Fertil Steril, 2007, 87(1): 143-146. |
[64] | Cavallari DCF, Coelho CMH, Verde LCL. Role of growth differentiation factor 9 and bone morphogenetic protein 15 in ovarian function and their importance in mammalian female fertility-A review[J]. Asian-Australas J Anim Sci, 2016, 29(8): 1065-1074. |
[65] | Adhikari D, Zheng W, Shen Y, et al. Tsc/mTORC1 signaling in oocytes governs the quiescence and activation of primordial follicles[J]. Hum Mol Genet, 2010, 19(3): 397-410. |
[66] | Adhikari D, Flohr G, Gorre N, et al. Disruption of Tsc2 in oocytes leads to overactivation of the entire pool of primordial follicles[J]. Mol Hum Reprod, 2009, 15(12): 765-770. |
[67] | Jiang ZZ, Hu MW, Ma XS, et al. LKB1 acts as a critical gatekeeper of ovarian primordial follicle pool[J]. Oncotarget, 2016, 7(5): 5738-5753. |
[68] | Kaldis P. Another piece of the p27Kip1 puzzle[J]. Cell, 2007, 128(2): 241-244. |
[69] | Fero ML, Rivkin M, Tasch M, et al. A syndrome of multiorgan hyperplasia with features of gigantism, tumorigenesis, and female sterility in p27(Kip1)-deficient mice[J]. Cell, 1996, 85(5): 733-744. |
[70] | Kitanaka J, Takemura M, Matsumoto K, et al. Structure and chromosomal localization of a murine LIM/homeobox gene, Lhx8[J]. Genomics, 1998, 49(2): 307-309. |
[71] | Reddy P, Adhikari D, Zheng W, et al. PDK1 signaling in oocytes controls reproductive aging and lifespan by manipulating the survival of primordial follicles[J]. Hum Mol Genet, 2009, 18(15): 2813-2824. |
[72] | Zheng W, Zhang H, Liu K. The two classes of primordial follicles in the mouse ovary: their development, physiological functions and implications for future research[J]. Mol Hum Reprod, 2014, 20(4): 286-296. |
[73] | Frondorf K, Henkels KM, Frohman MA, et al. Phosphatidic acid is a leukocyte chemoattractant that acts through S6 kinase signaling[J]. J Biol Chem, 2010, 285(21): 15837-15847. |