|
- 2016
CDKAL1(rs10946398 C/A)基因多态性与2型糖尿病易感性关系Meta分析
|
Abstract:
[1] | Gang CHEN, Yuan XU, Yinghua LIN, et al. Association study of genetic variants of 17 diabetes-related genes/loci and cardiovascular risk and diabetic nephropathy in the Chinese She population[J]. J Diabetes, 2013, 5(2): 136-145. |
[2] | Flrez JC, Jablonsh KA, Bayley N, et al.Tcf712 polymorphisms and progression to diabetes in the diabetes prevention program[J]. N Engl J Med, 2006, 355(3): 241-250. |
[3] | Lin Y, Li P, Cai L, et al. Association study of genetic variants in eight genes/loci with type 2 diabetes in a Han Chinese population[J]. BMC Med Genet, 2010, 11(4): 97. |
[4] | Scott LJ, Mohlke KL, Bonnycastle LL, et al. A genome-wide association study of type 2 diabetes in Finns detects multiple susceptibility variants[J]. Science, 2007, 316(5829): 1341-1345. |
[5] | Cruz M, Valladares-Salgado A, Garcia-Mena J, et al. Candidate gene association study conditioning on individual ancestry in patients with type 2 diabetes and metabolic syndrome from Mexico City[J]. Diabetes Metab Res Rev, 2010, 26(4): 261-270. |
[6] | Cauchi S, Meyre D, Dina C, et al.Transcription factor tcf712 genetic study in the French population: Expression in human beta-cells and adipose tissue and strong association with type 2 diabetes[J]. Diabetes, 2006, 55(10): 2903-2908. |
[7] | Lyssenko V, Jonsson A, Almgren P, et al. Clinical risk factors, DNA variants, and the development of type 2 diabetes[J]. N Engl J Med, 2008, 359(21):2220-2232. |
[8] | Groenewoud MJ, Dekker JM, Fritsche A, et al. Variants of CDKAL1 and IGF2BP2 affect first-phase insulin secretion during hyperglycaemic clamps[J]. Diabetologia, 2008, 51(9): 1659-1663. |
[9] | Dehwah MA, Wang M, Huang QY. CDKAL1 and type 2 diabetes: a global meta-analysis[J]. Genet Mol Res, 2010, 9(2): 1109-1120. |
[10] | Stang A. Critical evaluation of the Newcastle-Ottawa scale for the assessment of the quality of nonrandomized studies in meta-analyses[J]. Eur J Epidemiol, 2010, 25(9): 603-605. |
[11] | Grarup N, Rose CS, Andersson EA, et al. Studies of association of variants near the HHEX, CDKN2A/B, and IGF2BP2 genes with type 2 diabetes and impaired insulin release in 10,705 Danish subjects: validation and extension of genome-wide association studies[J]. Diabetes, 2007, 56(12): 3105-3111. |
[12] | Saxena R, Voight BF, Lyssenko V, et al. Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels[J]. Science, 2007, 316(5829): 1331-1336. |
[13] | Liu Y, Yu L, Zhang D, et al. Positive association between variations in CDKAL1 and type 2 diabetes in Han Chinese individuals[J]. Diabetologia, 2008, 51(11): 2134-2137. |
[14] | Wu Y, Li H, Loos RJ, et al. Common variants in CDKAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are associated with type 2 diabetes and impaired fasting glucose in a Chinese Han population[J]. Diabetes, 2008, 57(10): 2834-2842. |
[15] | Hu C, Zhang R, Wang C, et al. PPARG, KCNJ11, CDKAL1, CDKN2A-CDKN2B, IDE-KIF11-HHEX, IGF2BP2 and SLC30A8 are associated with type 2 diabetes in a Chinese population[J]. PLoS One, 2009, 4(10): 7643. |
[16] | Chauhan G, Spurgeon CJ, Tabassum R, et al. Impact of common variants of PPARG, KCNJ11, TCF7L2, SLC30A8, HHEX, CDKN2A, IGF2BP2, and CDKAL1 on the risk of type 2 diabetes in 5,164 Indians[J]. Diabetes, 2010, 59(8): 2068-2074. |
[17] | Han X, Luo Y, Ren Q, et al. Implication of genetic variants near SLC30A8, HHEX, CDKAL1, CDKN2A/B, IGF2BP2, FTO, TCF2, KCNQ1, and WFS1 in type 2 diabetes in a Chinese population[J]. BMC Med Genet, 2010, 11(4): 81. |
[18] | Wen J, R?nn T, Olsson A, et al. Investigation of type 2 diabetes risk alleles support CDKN2A/B, CDKAL1, and TCF7L2 as susceptibility genes in a Han Chinese cohort[J]. PLoS One, 2010, 5(2): 9153. |
[19] | Cooke JN, Ng MC, Palmer ND, et al. Genetic risk assessment of type 2 diabetes-associated polymorphisms in African Americans[J]. Diabetes Care, 2012, 35(2): 287-292. |
[20] | Malecki MT. Genetics of type 2 diabetes mellitus[J]. Diabetes Res Clin Pract, 2005, 68(3):10-21. |
[21] | Zeggini E, Weedon MN, Lindgren CM, et al. Replication of genome-wide association signals in UK samples reveals risk loci for type 2 diabetes[J]. Science, 2007, 316(5829): 1336-1341. |
[22] | Lewis JP, Palmer ND, Hicks PJ, et al. Association analysis in African Americans of European-derived type 2 diabetes single nucleotide polymorphisms from whole-genome association studies[J]. Diabetes, 2008, 57(8): 2220-2225. |
[23] | Gloyn A, McCarthy MI. The genetics of type 2 diabetes[J]. Best Pract Res Clin Endocrinol Metab, 2001, 15(3): 293-308. |
[24] | Sawsan Al-Sinani, Nicolas Woodhouse, Ali Al-Mamari, et al. Association of gene variants with susceptibility to type 2 diabetes among Omanis[J]. World J Diabetes, 2015, 6(2): 358-366. |
[25] | Wild S, Roglic G, Green A, et al. Global prevalence of diabetes: Estimates for the year 2000 a11d projections for 2030[J]. Diabetes care, 2004, 27(5): 1047-1053. |
[26] | Barroso I, Luan J, Middelberg RP, et al. Candidate gene association study in type 2 diabetes indicates a role for genes involved in beta-cell function as well as insulin action[J]. PLoS BioL, 2003, 1(1): 20. |