|
- 2018
多囊卵巢综合征高雄激素血症患者颗粒细胞FBP1基因的表达及影响
|
Abstract:
[1] | 贾月月, 刘洪彬, 李婧博, 等. 多囊卵巢综合征患者颗粒细胞microRNA-200b的表达及影响[J]. 山东大学学报(医学版), 2017, 55(1): 63-68. JIA Yueyue, LIU Hongbin, LI Jingbo, et al. Expression of microRNA-200b in granulosa cells of PCOS patients and its significance[J]. Journal of Shandong University(Health Sciences), 2017, 55(1): 63-68. |
[2] | Ji S, Liu X, Li B, et al. The polycystic ovary syndrome-associated gene Yap1 is regulated by gonadotropins and sex steroid hormones in hyperandrogenism-induced oligo-ovulation in mouse[J]. Mol Hum Reprod, 2017, 23(10): 698-707. |
[3] | Li F, Yao L, Wu H, et al. Analysis on endocrine and metabolic features of different phenotypes of polycystic ovary syndrome patients[J]. Pak J Pharm Sci, 2016, 29(5): 1735-1738. |
[4] | Guo X, Wang H, Wu X, et al. Nicotine affects rat Leydig cell function in vivo and vitro via down-regulating some key steroidogenic enzyme expressions[J]. Food Chem Toxicol, 2017, 110: 13-24. doi: 10.1016/j.fct.2017.09.055 |
[5] | Noroozzadeh M, Behboudi GS, Zadeh VA, et al. Hormone-induced rat model of polycystic ovary syndrome: a systematic review[J]. Life Sci, 2017, 191: 259-272. doi: 10.1016/j.lfs.2017.10.020. |
[6] | EI Khoudary SR. Gaps, limitations and new insights on endogenous estrogen and follicle stimulating hormone as related to risk of cardiovascular disease in women traversing the menopause: a narrative review[J]. Maturitas, 2017, 104: 44-53. doi: 10.1016/j.maturitas.2017.08.003. |
[7] | Chen ZJ, Zhao H, He L, et al. Genome-wide association study identifies susceptibility loci for polycystic ovary syndrome on chromosome 2p16.3, 2p21 and 9q33.3[J]. Nat Genet, 2011, 43(1): 55-59. |
[8] | Li B, Qiu B, Lee DS, et al. Fructose-1,6-bisphosphatase opposes renal carcinoma progression[J]. Nature, 2014, 513(7517): 251-255. |
[9] | 邹建平, 陈颖, 李圣贤, 等. 多囊卵巢综合征高雄激素血症动物模式构建及中药治疗机制[J]. 医学研究杂志, 2017, 46(9): 171-174. ZOU Jianping, CHEN Ying, LI Shengxian, et al. Association between body fat composition,blood lipids,insulin sensitivity and different androgens in PCOS patients[J]. J Med Res, 2017, 46(9): 171-174. |
[10] | Yu J, Li J, Chen Y, et al. Snail enhances glycolysis in the epithelial-mesenchymal transition process by targeting FBP1 in gastric cancer[J]. Cell Physiol Biochem, 2017, 43(1): 31-38. |
[11] | Jin X, Pan Y, Wang L, et al. Fructose-1,6-bisphosphatase inhibits ERK activation and bypasses gemcitabine resistance in pancreatic cancer by blocking IQGAP1-MAPK interaction[J]. Cancer Res, 2017, 77(16): 4328-4341. |
[12] | Kim J, Yang G, Kim Y, et al. AMPK activators: mechanisms of action and physiological activities[J]. Exp Mol Med, 2016, 48(4): e224. doi: 10.1038/emm.2016.16. |
[13] | Dumesic DA, Oberfield SE, Stener-Victorin E, et al. Scientific statement on the diagnostic criteria, epidemiology, pathophysiology, and molecular genetics of polycystic ovary syndrome[J]. Endocr Rev, 2015, 36(5): 487-525. |
[14] | 李婧博, 刘洪彬, 贾月月, 等. microRNA-183在PCOS胰岛素抵抗中的表达及其临床意义[J]. 山东大学学报(医学版), 2017, 55(1): 69-74. LI Jingbo, LIU Hongbin, JIA Yueyue, et al. Expression and clinical significance of microRNA-183 in polycystic ovary syndrome with insulin resistance[J]. Journal of Shandong University(Health Sciences), 2017, 55(1): 69-74. |
[15] | Zhao S, Tian Y, Gao X, et al. Family-based analysis of eight susceptibility loci in polycystic ovary syndrome[J]. Sci Rep, 2015, 5: 12619. doi: 10.1038/srep12619. |
[16] | Thomas DS, Kenneth JL. Analyzing real-time PCR data by the comparative CT method[J]. Nat Protoc, 2008, 3(6): 1101-1108. |
[17] | Drabovich A, Pavlou M, Dimitromanolakis A, et al. Quantitative analysis of energy metabolic pathways in MCF-7 breast cancer cells by selected reaction monitoring assay[J]. Mol Cell Proteomics, 2012, 11(8): 422-434. |
[18] | Gleicher N, Weghofer A, Barad DH. The role of androgens in follicle maturation and ovulation induction: friend or foe of infertility treatment?[J]. Reprod Biol Endocrinol, 2011, 9: 116. doi: 10.1186/1477-7827-9-116. |
[19] | Chen YC, Chang HM, Cheng JC, et al. Transforming growth factor-β1 up-regulates connexin43 expression in human granulosa cells[J]. Hum Reprod, 2015, 30(9): 2190-2201. |
[20] | Hasegawa T, Kamada Y, Hosoya T, et al. A regulatory role of androgen in ovarian steroidogenesis by rat granulosa cells[J]. J Steroid Biochem Mol Biol, 2017, 172: 160-165. doi: 10.1016/j.jsbmb.2017.07.002. |
[21] | Baranova A, Tran TP, Afendy A, et al. Molecular signature of adipose tissue in patients with both non-alcoholic fatty liver disease(NAFLD)and polycystic ovarian syndrome(PCOS)[J]. J Transl Med, 2013, 11: 133. doi: 10.1186/1479-5876-11-133. |
[22] | Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome(PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited[J]. Endocr Rev, 2016, 37(5): 467-520. |
[23] | 哈灵侠, 石玉华, 赵君利, 等. 宁夏地区多囊卵巢综合征患者不同雄激素状态脂代谢特点的比较性分析[J]. 山东大学学报(医学版), 2013, 51(9): 88-91. HA Lingxia, SHI Yuhua, ZHAO Junli, et al. A comparison of lipid metabolism in PCOS patients with different testosterone levels in Ningxia Hui autonomous region[J]. Journal of Shandong University(Health Sciences), 2013, 51(9): 88-91. |
[24] | King SM, Modi DA, Eddie SL, et al. Insulin and insulin-like growth factor signaling increases proliferation and hyperplasia of the ovarian surface epithelium and decreases follicular integrity through upregulation of the PI3-kinase pathway[J]. J Ovarian Res, 2013, 6(1): 12. doi: 10.1186/1757-2215-6-12. |
[25] | Liu T, Zhao H, Wang J, et al. The role of fructose-1,6-bisphosphatase 1 in abnormal development of ovarian follicles caused by high testosterone concentration[J]. Mol Med Rep, 2017, 16(5): 6489-6498. |