|
- 2015
MiR-29c在大鼠蛛网膜下腔出血后抑制柔脑膜纤维化的实验研究
|
Abstract:
[1] | Lee P, Monaco ER, Friedlander RM. Blocking TGF-beta activity and associated inflammation may halt hydrocephalus[J]. Neurosurgery, 2013, 73(6): N13-N14. |
[2] | Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function[J]. Cell, 2004, 116(2): 281-297. |
[3] | Zhang Y, Huang XR, Wei LH, et al. MiR-29b as a therapeutic agent for angiotensin II-induced cardiac fibrosis by targeting TGF-beta/Smad3 signaling[J]. Mol Ther, 2014, 22(5): 974-985. |
[4] | 张天一,刘飞,廖达光,等. 实验性蛛网膜下腔出血后柔脑膜纤维化的研究[J]. 中风与神经疾病杂志, 2008, 25(3): 277-280. ZHANG Tianyi, LIU Fei, LIAO Daguang, et al. Index of leptomeningeal fibrosis after experimental subarachnoid hemorrhage[J]. Chinese Journal of Critical Care Medicine, 2008, 25(3): 277-280. |
[5] | Makwana M, Jones LL, Cuthill D, et al. Endogenous transforming growth factor beta 1 suppresses inflammation and promotes survival in adult CNS[J]. J Neurosci, 2007, 27(42): 11201-11213. |
[6] | Tiao MM, Wang FS, Huang LT, et al. MicroRNA-29a protects against acute liver injury in a mouse model of obstructive jaundice via inhibition of the extrinsic apoptosis pathway[J]. Apoptosis, 2014, 19(1): 30-41. |
[7] | Yang T, Liang Y, Lin Q, et al. MiR-29 mediates TGFbeta1-induced extracellular matrix synthesis through activation of PI3K-AKT pathway in human lung fibroblasts[J]. J Cell Biochem, 2013, 114(6): 1336-1342. |
[8] | Sajanti J, Heikkinen E, Majamaa K. Transient increase in procollagen propeptides in the CSF after subarachnoid hemorrhage[J]. Neurology, 2000, 55(3): 359-363. |
[9] | Ramdas V, Mcbride M, Denby L, et al. Canonical transforming growth factor-beta signaling regulates disintegrin metalloprotease expression in experimental renal fibrosis via miR-29[J]. Am J Pathol, 2013, 183(6): 1885-1896. |
[10] | Botfield H, Gonzalez AM, Abdullah O, et al. Decorin prevents the development of juvenile communicating hydrocephalus[J]. Brain, 2013, 136(Pt 9): 2842-2858. |
[11] | Pandit KV, Milosevic J, Kaminski N. MicroRNAs in idiopathic pulmonary fibrosis[J]. Transl Res, 2011, 157(4): 191-199. |
[12] | Maurer B, Stanczyk J, Jungel A, et al. MicroRNA-29, a key regulator of collagen expression in systemic sclerosis[J]. Arthritis Rheum, 2010, 62(6): 1733-1743. |
[13] | Bian EB, Li J, Zhao B. MiR-29, a potential therapeutic target for liver fibrosis[J]. Gene, 2014, 544(2): 259-260. |
[14] | Qin W, Chung AC, Huang XR, et al. TGF-beta/Smad3 signaling promotes renal fibrosis by inhibiting miR-29[J]. J Am Soc Nephrol, 2011, 22(8): 1462-1474. |
[15] | Wang B, Komers R, Carew R, et al. Suppression of microRNA-29 expression by TGF-beta1 promotes collagen expression and renal fibrosis[J]. J Am Soc Nephrol, 2012, 23(2): 252-265. |
[16] | Flood C, Akinwunmi J, Lagord C, et al. Transforming growth factor-beta1 in the cerebrospinal fluid of patients with subarachnoid hemorrhage: titers derived from exogenous and endogenous sources[J]. J Cereb Blood Flow Metab, 2001, 21(2): 157-162. |
[17] | Moinuddin SM, Tada T. Study of cerebrospinal fluid flow dynamics in TGF-beta1 induced chronic hydrocephalic mice[J]. Neurol Res, 2000, 22(2): 215-222. |
[18] | van Rooij E, Sutherland LB, Thatcher JE, et al. Dysregulation of microRNAs after myocardial infarction reveals a role of miR-29 in cardiac fibrosis[J]. Proc Natl Acad Sci U S A, 2008, 105(35): 13027-13032. |