|
- 2018
多能干细胞维持遗传物质稳定性的研究进展
|
Abstract:
[1] | Cervantes RB, Stringer JR, Shao C, et al. Embryonic stem cells and somatic cells differ in mutation frequency and type[J]. Proc Natl Acad Sci U S A, 2002, 99(6): 3586-3590. |
[2] | Werbowetski-Ogilvie TE, Bossé M, Stewart M, et al. Characterization of human embryonic stem cells with features of neoplastic progression[J]. Nat Biotechnol, 2009, 27(1): 91-97. |
[3] | Vitale I, Manic G, De Maria R, et al. DNA damage in stem cells[J]. Mol Cell, 2017, 66(3): 306-319. |
[4] | Oliveira PH, da Silva CL,Cabral JM. Concise review: genomic instability in human stem cells: current status and future challenges[J]. Stem Cells, 2014, 32(11): 2824-2832. |
[5] | Lin T, Chao C, Saito S, et al. p53 induces differentiation of mouse embryonic stem cells by suppressing Nanog expression[J]. Nat Cell Biol, 2005, 7(2): 165-171. |
[6] | Dumitru R, Gama V, Fagan BM, et al. Human embryonic stem cells have constitutively active Bax at the Golgi and are primed to undergo rapid apoptosis[J]. Mol Cell, 2012, 46(5): 573-583. |
[7] | Zalzman M, Falco G, Sharova LV, et al. Zscan4 regulates telomere elongation and genomic stability in ES cells[J]. Nature, 2010, 464(7290): 858-863. |
[8] | Zeman MK, Cimprich KA. Causes and consequences of replication stress[J]. Nat Cell Biol, 2014, 16(1): 2-9. |
[9] | Ahuja AK, Jodkowska K, Teloni F, et al. A short G1 phase imposes constitutive replication stress and fork remodelling in mouse embryonic stem cells[J]. Nat Commun, 2016, 7: 10660. |
[10] | Hong Y, Cervantes RB, Tichy E, et al. Protecting genomic integrity in somatic cells and embryonic stem cells[J]. Mutat Res, 2007, 614(1-2): 48-55. |
[11] | Gonfloni S. Targeting DNA damage response: threshold, chromatin landscape and beyond[J]. Pharmacol Ther, 2013, 138(1): 46-52. |
[12] | Stambrook PJ, Tichy ED. Preservation of genomic integrity in mouse embryonic stem cells[J]. Adv Exp Med Biol, 2010, 695: 59-75. |
[13] | Filion TM, Qiao M, Ghule PN, et al. Survival responses of human embryonic stem cells to DNA damage[J]. J Cell Physiol, 2009, 220(3): 586-592. |
[14] | Tichy ED, Pillai R, Deng L, et al. Mouse embryonic stem cells, but not somatic cells, predominantly use homologous recombination to repair double-strand DNA breaks[J]. Stem Cells Dev, 2010, 19(11): 1699-1711. |
[15] | Serrano L, Liang L, Chang Y, et al. Homologous recombination conserves DNA sequence integrity throughout the cell cycle in embryonic stem cells[J]. Stem Cells Dev, 2011, 20(2): 363-374. |
[16] | Liu JC, Guan X, Ryan JA, et al. High mitochondrial priming sensitizes hESCs to DNA-damage-induced apoptosis[J]. Cell Stem Cell, 2013, 13(4): 483-491. |
[17] | Zhao B, Zhang WD, Duan YL, et al. Filia is an ESC-specific regulator of DNA damage response and safeguards genomic stability[J]. Cell Stem Cell, 2015, 16(6): 684-698. |
[18] | Xiong J, Todorova D, Su NY, et al. Stemness factor Sall4 is required for DNA damage response in embryonic stem cells[J]. J Cell Biol, 2015, 208(5): 513-520. |
[19] | Tichy ED, Stambrook PJ. DNA repair in murine embryonic stem cells and differentiated cells[J] Exp Cell Res, 2008, 314(9): 1929-1936. |
[20] | Blagosklonny MV, Pardee AB. The restriction point of the cell cycle[J]. Cell Cycle, 2002, 1(2): 103-110. |
[21] | Chuykin IA, Lianguzova MS, Pospelova TV, et al. Activation of DNA damage response signaling in mouse embryonic stem cells[J]. Cell Cycle, 2008, 7(18): 2922-2928. |
[22] | Zhao B, Zhang W, Cun Y, et al. Mouse embryonic stem cells have increased capacity for replication fork restart driven by the specific Filia-Floped protein complex[J]. Cell Res, 2018, 28(1): 69-89. |
[23] | Byun TS, Pacek M, Yee MC, et al. Functional uncoupling of MCM helicase and DNA polymerase activities activates the ATR-dependent checkpoint[J]. Genes Dev, 2005, 19(9): 1040-1052. |
[24] | Savatier P, Lapillonne H, Jirmanova L, et al. Analysis of the cell cycle in mouse embryonic stem cells[J]. Methods Mol Biol, 2002, 185: 27-33. |
[25] | Mantel C, Guo Y, Lee MR, et al. Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability[J]. Blood, 2007, 109(10): 4518-4527. |
[26] | Keefe DL, Liu L. Telomeres and reproductive aging[J]. Reprod Fertil Dev, 2009, 21(1): 10-14. |
[27] | Lefort N, Perrier AL, Laabi Y, et al. Human embryonic stem cells and genomic instability[J]. Regen Med, 2009, 4(6): 899-909. |
[28] | Maillard PV, Ciaudo C, Marchais A, et al. Antiviral RNA interference in mammalian cells[J]. Science, 2013, 342(6155): 235-238. |
[29] | Wu X, Dao Thi VL, Huang Y, et al. Intrinsic immunity shapes viral resistance of stem cells[J]. Cell, 2018, 172(3): 423-438. |
[30] | Blelloch RH, Hochedlinger K, Yamada Y, et al. Nuclear cloning of embryonal carcinoma cells[J]. Proc Natl Acad Sci U S A, 2004, 101(39): 13985-13990. |
[31] | Harper JW, Elledge SJ. The DNA damage response: ten years after[J]. Molecular Cell, 2007, 28(5): 739-745. |
[32] | Bass TE, Luzwick JW, Kavanaugh G, et al. ETAA1 acts at stalled replication forks to maintain genome integrity[J]. Nature Cell Biology, 2016, 18(11): 1185-1195. |
[33] | Lee YC, Zhou Q, Chen J, et al. RPA-binding protein ETAA1 is an ATR activator involved in DNA replication stress response[J]. Curr Biol, 2016, 26(24): 3257-3268. |
[34] | Sirbu BM, Couch FB, Cortez D. Monitoring the spatiotemporal dynamics of proteins at replication forks and in assembled chromatin using isolation of proteins on nascent DNA[J]. Nat Protoc, 2012, 7(3): 594-605. |
[35] | Lee JH, Paull TT. ATM activation by DNA double-strand breaks through the Mre11-Rad50-Nbs1 complex[J]. Science, 2005, 308(5721): 551-554. |
[36] | Pines A, Kelstrup CD, Vrouwe MG, et al. Global phosphoproteome profiling reveals unanticipated networks responsive to cisplatin treatment of embryonic stem cells[J]. Mol Cell Biol, 2011, 31(24): 4964-4977. |
[37] | Carreras Puigvert J, von Stechow L, Siddappa R, et al. Systems biology approach identifies the kinase csnk1a1 as a regulator of the DNA damage response in embryonic stem cells[J]. Sci Signal, 2013, 6(259): ra5. |
[38] | Chambers I, Colby D, Robertson M, et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells[J]. Cell, 2003, 113(5): 643-655. |
[39] | Lee Y, Katyal S, Downing SM, et al. Neurogenesis requires TopBP1 to prevent catastrophic replicative DNA damage in early progenitors[J]. Nat Neurosci, 2012, 15(6): 819-826. |
[40] | Lee Y, Shull ER, Frappart PO, et al. ATR maintains select progenitors during nervous system development[J]. EMBO J, 2012, 31(5): 1177-1189. |
[41] | Enriquez-Rios V, Dumitrache LC, Downing SM, et al. DNA-PKcs, ATM, and ATR interplay maintains genome integrity during neurogenesis[J]. J Neurosci, 2017, 37(4): 893-905. |
[42] | Zhou ZW, Tapias A, Bruhn C, et al. DNA damage response in microcephaly development of MCPH1 mouse model[J]. DNA Repair(Amst), 2013, 12(8): 645-655. |
[43] | Agarwal A, Gupta S, Sharma R. Oxidative stress and its implications in female infertility-a clinicians perspective[J]. Reprod Biomed Online, 2005, 11(5): 641-650. |
[44] | Suh EK, Yang A, Kettenbach A, et al. p63 protects the female germ line during meiotic arrest[J]. Nature, 2006, 444(7119): 624-628. |
[45] | Titus S, Li F, Stobezki R, et al. Impairment of BRCA1-related DNA double-strand break repair leads to ovarian aging in mice and humans[J]. Sci Transl Med, 2013, 5(172): 172ra21. |
[46] | McKinnon PJ. Maintaining genome stability in the nervous system[J]. Nat Neurosci, 2013, 16(11): 1523-1529. |
[47] | Wei PC, Chang AN, Kao J, et al. Long neural genes harbor recurrent DNA break clusters in neural stem/progenitor cells[J]. Cell, 2016, 164(4): 644-655. |
[48] | Hamatani T, Falco G, Carter MG, et al. Age-associated alteration of gene expression patterns in mouse oocytes[J]. Hum Mol Genet, 2004, 13(19): 2263-2278. |
[49] | Baker DE, Harrison NJ, Maltby E, et al. Adaptation to culture of human embryonic stem cells and oncogenesis in vivo[J]. Nat Biotechnol, 2007, 25(2): 207-215. |